1+1/3+1/6+1/10+....+1/X(X+1):2=1\(\frac{1991}{1943}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(1+\frac{1}{3}+\frac{1}{6}+...+\frac{1}{x\left(x+1\right):2}=1\frac{1991}{1993}\)
\(\Rightarrow\frac{1}{3}+\frac{1}{6}+...+\frac{1}{x\left(x+1\right):2}=\frac{1991}{1993}\)
\(\Rightarrow\frac{2}{6}+\frac{2}{12}+...+\frac{2}{x\left(x+1\right)}=\frac{1991}{1993}\)
\(\Rightarrow\frac{2}{2.3}+\frac{2}{3.4}+...+\frac{2}{x\left(x+1\right)}=\frac{1991}{1993}\)
\(\Rightarrow2\left(\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{x\left(x+1\right)}\right)=\frac{1991}{1993}\)
\(\Rightarrow\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{x}-\frac{1}{x+1}=\frac{1991}{3986}\)
\(\Rightarrow\frac{1}{2}-\frac{1}{x+1}=\frac{1991}{3986}\)\(\Rightarrow\frac{1}{x+1}=\frac{1}{1993}\)
\(\Rightarrow x+1=1993\Rightarrow x=1992\)
=> 1/2+1/6+1/12+1/20+....+1/x.(x+1) = 1992/1993
=> 1/2+1/2.3+1/3.4+1/4.5+.....+1/x.(x+1) = 1992/1993
=> 1/2+1/2-1/3+1/3-1/4+1/4-1/5+.....+1/x-1/x+1 = 1992/1993
=> 1 - 1/x+1 = 1992/1993
=> x/x+1 = 1992/1993
=> x = 1992
Vậy x = 1992
Tk mk nha
\(\Rightarrow\frac{2}{2}+\frac{2}{2.3}+\frac{2}{2.6}+...+\frac{2}{x\left(x+1\right)}=\frac{3984}{1993}\)
\(\Rightarrow2\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{x\left(x+1\right)}\right)=\frac{3984}{1993}\)
\(\Rightarrow1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{x}-\frac{1}{x+1}=\frac{3984}{1993}:2\)
\(\Rightarrow1-\frac{1}{x+1}=\frac{1992}{1993}\)
\(\Rightarrow\frac{x}{x+1}=\frac{1992}{1993}\)
=>x=1992
chuyển 1 đi còn cái kia=1991/1993
nhân mỗi p/số với 1/2 rồi p/tích mẫu=2.3,3.4........x.(x+1)
lập hiệu ra rồi tính OK???
=2/2+2/6+2/12+...+...+2/x(x+1)=3984/1993
=2(1/1.2+1/2.3+1/3.4+...+1/x.(x+1)=3984/1993
=2(1-1/2+1/2-1/3+14-1/5+...+1/x-1/x+1=3984/1993
=2(1-1/x+1)=3984/1993
=2-2/x+1=3984/1993
2/x+1=2/1993
x+1=1003
x=1992
\(1+\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+...+\frac{1}{x.\left(x+1\right):2}=1\frac{1991}{1993}\)
=> \(\frac{1}{1.\left(1+1\right):2}+\frac{1}{2.\left(2+1\right):2}+\frac{1}{3.\left(3+1\right):2}+\frac{1}{4.\left(4+1\right):2}+...+\frac{1}{x.\left(x+1\right):2}=1\frac{1991}{1993}\)
=> \(\frac{1}{\frac{1.\left(1+1\right)}{2}}+\frac{1}{\frac{2.\left(2+1\right)}{2}}+...+\frac{1}{\frac{x.\left(x+1\right)}{2}}=1\frac{1991}{1993}\)
=> \(\frac{2}{1.2}+\frac{2}{2.3}+...+\frac{2}{x.\left(x+1\right)}=1\frac{1991}{1993}\)
=> \(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{x}-\frac{1}{x+1}=1\frac{1991}{1993}\)
=> \(1-\frac{1}{x+1}=1\frac{1991}{1993}\)
=> \(\frac{1}{x+1}=\frac{-1991}{1993}\)
=> -1991.(x + 1) = 1993
=> -1991x - 1991 = 1993
=> -1991x = 3984
=> x = \(-\frac{3984}{1991}\)
Ta có : \(1+\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+...+\frac{2}{x\left(x+1\right)}=1\frac{1989}{1991}\)
=> \(\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+...+\frac{2}{x\left(x+1\right)}=\frac{1989}{1991}\)
=> \(\frac{2}{6}+\frac{2}{12}+\frac{2}{20}+...+\frac{2}{x\left(x+1\right)}=\frac{1989}{1991}\)
=> \(2\left(\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+...+\frac{1}{x\left(x+1\right)}\right)=\frac{1989}{1991}\)
=> \(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{x\left(x+1\right)}=\frac{1989}{3982}\)
=> \(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{x}-\frac{1}{x+1}=\frac{1989}{3982}\)
=> \(\frac{1}{2}-\frac{1}{x+1}=\frac{1989}{3982}\)
=> \(\frac{1}{x+1}=\frac{1}{1991}\)
=> x + 1 = 1991
=> x = 1990
Vậy x = 1990
\(2\left(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+\frac{1}{x\left(x+1\right)}\right)=\frac{3980}{1991}\)
\(\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+...+\frac{1}{x\left(x+1\right)}=\frac{1990}{1991}\)
\(\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{x}-\frac{1}{x+1}=\frac{1990}{1991}\)
\(1-\frac{1}{x+1}=\frac{1990}{1991}\)
\(\frac{1}{x+1}=1-\frac{1990}{1991}\)
\(\frac{1}{x+1}=\frac{1}{1991}\)
\(x+1=1991\)
\(x=1990\)
\(\frac{1}{5.8}+\frac{1}{8.11}+\frac{1}{11.13}+....+\frac{1}{x\left(x+3\right)}=\frac{101}{1540}\)
\(\Leftrightarrow\frac{1}{3}\left(\frac{1}{5}-\frac{1}{8}+\frac{1}{8}-\frac{1}{11}+....+\frac{1}{x}-\frac{1}{x+3}\right)=\frac{101}{1540}\)
\(\Leftrightarrow\frac{1}{3}\left(\frac{1}{5}-\frac{1}{x+3}\right)=\frac{101}{1540}\)
\(\Leftrightarrow\frac{1}{5}-\frac{1}{x+3}=\frac{303}{1540}\)
\(\Leftrightarrow\frac{1}{x+3}=\frac{1}{308}\)
\(\Rightarrow x+3=308\Rightarrow x=305\)
câu 2 ko cần làm đâu