Tìm min: A=\(\frac{\sqrt{x}+2}{x+32}\)
Đk: \(x\ge0\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
mình làm mẫu thôi, bên dưới tương tự bạn nhé
a, \(\frac{\sqrt{x}+6}{\sqrt{x}-3}=\frac{\sqrt{x}-3+9}{\sqrt{x}-3}=1+\frac{9}{\sqrt{x}-3}\)ĐK : \(x\ge0;x\ne9\)
\(\Rightarrow\sqrt{x}-3\inƯ\left(9\right)=\left\{\pm1;\pm3;\pm9\right\}\)
\(\sqrt{x}-3\) | 1 | -1 | 3 | -3 | 9 | -9 |
x | 16 | 4 | 36 | 0 | 144 | loại |
Với x >= 0 ; x khác 9
\(B=\frac{2x-6\sqrt{x}+x+3\sqrt{x}-3x-3}{x-9}=\frac{-3\sqrt{x}-3}{x-9}=\frac{-3\left(\sqrt{x}+1\right)}{x-9}\)
\(\frac{B}{A}=\frac{-3\left(\sqrt{x}+1\right)}{x-9}:\frac{\sqrt{x}+1}{\sqrt{x}-3}=\frac{-3}{\sqrt{x}+3}+\frac{1}{2}< 0\)
\(\Leftrightarrow\frac{-6+\sqrt{x}+3}{2\left(\sqrt{x}+3\right)}< 0\Rightarrow\sqrt{x}-3< 0\Leftrightarrow x< 9\)
Kết hợp đk vậy 0 =< x < 9
ĐKXĐ của cả A và B : \(\hept{\begin{cases}x\ge0\\x\ne25\end{cases}}\)
\(A=\frac{\sqrt{x}+2}{\sqrt{x}-5}\)
\(B=\frac{x+3\sqrt{x}}{x-25}+\frac{1}{\sqrt{x}+5}\)
\(=\frac{x+3\sqrt{x}}{\left(\sqrt{x}-5\right)\left(\sqrt{x}+5\right)}+\frac{\sqrt{x}-5}{\left(\sqrt{x}-5\right)\left(\sqrt{x}+5\right)}\)
\(=\frac{x+4\sqrt{x}-5}{\left(\sqrt{x}-5\right)\left(\sqrt{x}+5\right)}=\frac{x-\sqrt{x}+5\sqrt{x}-5}{\left(\sqrt{x}-5\right)\left(\sqrt{x}+5\right)}\)
\(=\frac{\sqrt{x}\left(\sqrt{x}-1\right)+5\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-5\right)\left(\sqrt{x}+5\right)}=\frac{\left(\sqrt{x}-1\right)\left(\sqrt{x}+5\right)}{\left(\sqrt{x}-5\right)\left(\sqrt{x}+5\right)}\)
\(=\frac{\sqrt{x}-1}{\sqrt{x}-5}\)
\(M=\frac{B}{A}=\frac{\frac{\sqrt{x}-1}{\sqrt{x}-5}}{\frac{\sqrt{x}+2}{\sqrt{x}-5}}=\frac{\sqrt{x}-1}{\sqrt{x}-5}\times\frac{\sqrt{x}-5}{\sqrt{x}+2}=\frac{\sqrt{x}-1}{\sqrt{x}+2}\)
ĐKXĐ của M : \(\hept{\begin{cases}x\ge0\\x\ne25\end{cases}}\)
\(M\times\left(\sqrt{x}+2\right)\ge3x-3\)
\(\Leftrightarrow\frac{\sqrt{x}-1}{\sqrt{x}+2}\times\left(\sqrt{x}+2\right)\ge3x-3\)( ĐK : \(\hept{\begin{cases}x\ge0\\x\ne25\end{cases}}\))
\(\Leftrightarrow\sqrt{x}-1\ge3x-3\)
\(\Leftrightarrow3x-\sqrt{x}-3+1\ge0\)
\(\Leftrightarrow3x-\sqrt{x}-2\ge0\)
\(\Leftrightarrow3x-3\sqrt{x}+2\sqrt{x}-2\ge0\)
\(\Leftrightarrow3\sqrt{x}\left(\sqrt{x}-1\right)+2\left(\sqrt{x}-1\right)\ge0\)
\(\Leftrightarrow\left(\sqrt{x}-1\right)\left(3\sqrt{x}+2\right)\ge0\)
Dễ dàng nhận thấy \(3\sqrt{x}+2\ge2>0\forall x\ge0\)
\(\Rightarrow\sqrt{x}-1\ge0\)
\(\Leftrightarrow x\ge1\)
Kết hợp với điều kiện => Với 0 ≤ x ≤ 1 thì thỏa mãn đề bài
\(1,A=\frac{x+2}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}+\frac{\sqrt{x}\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}-\frac{x+\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\)
\(=\frac{x-2\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}=\frac{\sqrt{x}-1}{x+\sqrt{x}+1}\)
2, Với x>1 ta có \(\frac{1}{A}=\frac{x+\sqrt{x}+1}{\sqrt{x}-1}=\frac{\sqrt{x}\left(\sqrt{x}-1\right)+2\left(\sqrt{x}-1\right)+3}{\sqrt{x}-1}\)
\(=\sqrt{x}-1+\frac{3}{\sqrt{x}-1}+3\)
Áp dụng bđt AM-GM ta có
\(\frac{1}{A}\ge2\sqrt{\left(\sqrt{x}-1\right).\frac{3}{\sqrt{x}-1}}+3=2\sqrt{3}+3\)
Dấu "=" xảy ra khi \(\left(\sqrt{x}-1\right)^2=3\Rightarrow\sqrt{x}=\pm\sqrt{3}+1\)
\(\Rightarrow x=\left(\pm\sqrt{3}+1\right)^2=4\pm2\sqrt{3}\)
\(=\left(\frac{1}{\sqrt{x}}+\frac{\sqrt{x}}{\sqrt{x}+1}\right):\frac{\sqrt{x}}{x+\sqrt{x}}\)
\(=\left(\frac{\sqrt{x}+1+x}{\sqrt{x}(\sqrt{x}+1)}\right):\frac{\sqrt{x}}{\sqrt{x}\left(\sqrt{x}+1\right)}\)
\(=\frac{\sqrt{x}+1+x}{\sqrt{x}(\sqrt{x}+1)}\cdot\frac{\sqrt{x}\left(\sqrt{x}+1\right)}{\sqrt{x}}\)
\(=\frac{x+\sqrt{x}+1}{\sqrt{x}}\)
\(B=\left(\frac{\sqrt{x}+1}{\sqrt{x}\left(\sqrt{x}+1\right)}+\frac{x}{\sqrt{x}\left(\sqrt{x}+1\right)}\right).\left(\frac{\sqrt{x}\left(\sqrt{x}+1\right)}{\sqrt{x}}\right)\)
\(=\frac{\left(x+\sqrt{x}+1\right)\left(\sqrt{x}+1\right)}{\sqrt{x}\left(\sqrt{x}+1\right)}=\frac{x+\sqrt{x}+1}{\sqrt{x}}\)
\(x=4\Rightarrow B=\frac{4+2+1}{2}=\frac{7}{2}\)
\(B=\sqrt{x}+\frac{1}{\sqrt{x}}+1\ge2\sqrt{\frac{\sqrt{x}}{\sqrt{x}}}+1=3\)
\(B_{min}=3\) khi \(x=1\)
\(Z=\frac{\sqrt{x}-5}{\sqrt{x}+2}=1-\frac{7}{\sqrt{x}+2}\ge1-\frac{7}{2}=-\frac{5}{2}\)
ban oi hinh nhu day dau phai la bai cua lop 1 dau
no lang nhang va con phuong trinh nua chu
hinh nhu ban an nham lop thi phai ?