BÀI 2: Phân tích thành nhân tử .
a, 3x(x+1)+9(x+1)
b,x^2-5xy+2x-10y
giúp mk với ạ :((
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
bài 1:
a) x(x-2)-5y-(x-2)=(x-5y)(x-2)
b) =(2x-3-4x)(2x-3+4x)=(-2x-3)(6x-3)
bài 2 bạn tự luyện nhé
a, x2-5xy+2x-10y = (x2 + 2x)-(5xy+10y)
= x(x+2)-5y(x+2)
= (x+2)(x-5y)
b, x2-5x+4 = x2- x - 4x +4
= (x2-x)-(4x-4)
=x(x-1)-4(x-4)
=(x-1)(x-4)
\(a,x^2-5xy+2x-10y\)
\(=\left(x^2-5xy\right)+\left(2x-10y\right)\)
\(=x\left(x-5y\right)+2\left(x-5y\right)\)
\(=\left(x-5y\right)\left(x+2\right)\)
\(b,x^2-5x+4\)
\(=x^2-4x-x+4\)
\(=x\left(x-4\right)-\left(x-4\right)\)
\(=\left(x-1\right)\left(x-4\right)\)
1)
a) \(\left(x+2\right)^2-\left(x-2\right)\left(x+2\right)\)
\(=\left(x+2\right)\left[\left(x+2\right)-\left(x-2\right)\right]\)
\(=\left(x+2\right)\left(x+2-x+2\right)\)
\(=4\left(x+2\right)\)
b) \(x+2x^2+2x^3\)
\(=x\left(2x+2x^2+1\right)\)
1) a. \(\left(x+2\right)\left(x+2-x+2\right)=4\left(x+2\right)\)
b. \(x\left(1+2x+2x^2\right)\)
2) a. \(=x^2-4-\left(x^2+4x+3\right)=x^2-4-x^2-4x-3=-4x-7\)
b. Áp dụng dạng \(\left(a+b\right)^2=a^2+b^2+2ab\)
\(\left(2x+1\right)^2+\left(3x-1\right)^2+2\left(2x+1\right)\left(3x-1\right)\)
\(=\left(2x+1+3x-1\right)^2=\left(5x\right)^2=25x^2\)
Bài 1:
\(a,2x^2y\left(2x^2y^2-xy^2\right)\\ =2x^2x^2y^2y-2x^2x.y^2.y=2x^4y^3-2x^3y^3\\ b,\left(x-1\right)\left(2x+3\right)\\ =x.2x+x.3-1.2x-1.3=2x^2+3x-2x-3\\ =2x^2+x-3\\ c,\left(20x^3y^4+10x^2y^3-5xy\right):5xy\\ =20x^3y^4:5xy+10x^2y^3:5xy-5xy:5xy\\ =\left(20:5\right).\left(x^3:x\right).\left(y^4:y\right)+\left(10:5\right).\left(x^2:x\right).\left(y^3:y\right)-\left(5:5\right).\left(x:x\right).\left(y:y\right)\\ =4x^2y^3+2xy^2-1\\ d,\left(y-3x\right)^2-\left(y^2-6xy\right)\\ =\left[y^2-2.y.3x+\left(3x\right)^2\right]-\left(y^2-6xy\right)\\ =y^2-6xy+9x^2-y^2+6xy =9x^2\)
Bài 2:
\(a,4xy+4xz=4x\left(y+z\right)\\ b,x^2-y^2+9-6x\\ =\left(x^2-6x+9\right)-y^2\\ =\left(x-3\right)^2-y^2\\ =\left(x-3-y\right)\left(x-3+y\right)\)
Bài 3:
\(a,\dfrac{3xy}{y+z}+\dfrac{3xz}{y+z}\\=\dfrac{3xy+3xz}{y+z}\\ =\dfrac{3x\left(y+z\right)}{\left(y+z\right)}=3x\left(Với:y\ne-z\right)\\ b,\dfrac{x}{x+2}-\dfrac{x}{x-2}\\ =\dfrac{x\left(x-2\right)-x\left(x+2\right)}{\left(x+2\right)\left(x-2\right)}\\ =\dfrac{x^2-2x-x^2-2x}{\left(x+2\right)\left(x-2\right)}=0\)
Bạn tải ứng dụng PhotoMath về nha. Ứng dụng này sẽ giải toán số chi tiết
a) \(x^3-4x^2-12x+27\)
\(=\left(x^3+27\right)-\left(4x^2+12x\right)\)
\(=\left(x+3\right)\left(x^2-3x+9\right)-4x\left(x+3\right)\)
\(=\left(x+3\right)\left(x^2-7x+9\right)\)
b) \(x^3-3x^2-4x+12\)
\(=x^2\left(x-3\right)-4\left(x-3\right)\)
\(=\left(x^2-4\right)\left(x-3\right)\)
\(=\left(x+2\right)\left(x-2\right)\left(x-3\right)\)
a) \(9x^2+6xy+y^2=\left(3x+y\right)^2\)
b) \(6x-9-x^2=-\left(x-3\right)^2\)
a) \(9\left(x+y-1\right)^2-4\left(2x+3y+1\right)^2\)
\(=\left(3x+3y-3\right)^2-\left(4x+6y+2\right)^2\)
\(=\left(3x+3y-3-4x-6y-2\right)\left(3x+3y-3+4x+6y+2\right)\)
\(=\left(-x-3y-5\right)\left(7x+9y-1\right)\)
b) \(3x^4y^2+3x^3y^2+3xy^2+3y^2\)
\(=\left(3x^4y^2+3xy^2\right)+\left(3x^3y^2+3y^2\right)\)
\(=3xy^2\left(x^3+1\right)+3y^2\left(x^3+1\right)\)
\(=\left(3xy^2+3y^2\right)\left(x^3+1\right)\)
\(=3y^2\left(x+1\right)\left(x+1\right)\left(x^2-x+1\right)\)
\(=3y^2\left(x+1\right)^2\left(x^2-x+1\right)\)
c) \(\left(x+y\right)^3-1-3xy\left(x+y-1\right)\)
\(=\left(x+y-1\right)\left[\left(x+y\right)^2+x+y+1\right]-3xy\left(x+y-1\right)\)
\(=\left(x+y-1\right)\left(x^2+2xy+y^2+x+y+1-3xy\right)\)
\(=\left(x+y-1\right)\left(x^2+x+y^2+y+1-xy\right)\)
\(1,\\ a,=10x^2y\\ b,=x^2+7x\\ 2,\\ =x\left(3y+11z\right)\)
Bài 1:
\(a,=3x\left(3xy+5y-1\right)\\ b,=\left(z-2\right)\left(3z-5\right)\\ c,=\left(x+2y\right)^2-4z^2=\left(x+2y+2z\right)\left(x+2y-2z\right)\\ d,=x^2-3x+5x-15=\left(x-3\right)\left(x+5\right)\)
Bài 2:
\(a,\Leftrightarrow x\left(x-4\right)=0\Leftrightarrow\left[{}\begin{matrix}x=0\\x=4\end{matrix}\right.\\ b,\Leftrightarrow2x+2-4x^2-12x=9\\ \Leftrightarrow4x^2+10x+7=0\\ \Leftrightarrow4\left(x^2+\dfrac{5}{2}x+\dfrac{25}{16}\right)+\dfrac{3}{4}=0\\ \Leftrightarrow4\left(x+\dfrac{5}{6}\right)^2+\dfrac{3}{4}=0\left(vô.lí\right)\\ \Leftrightarrow x\in\varnothing\\ c,\Leftrightarrow x^2-12x+36=0\\ \Leftrightarrow\left(x-6\right)^2=0\\ \Leftrightarrow x=6\)
\(a,3x\left(x+1\right)+9\left(x+1\right)\\ =\left(3x+9\right)\left(x+1\right)\\ =3\left(x+3\right)\left(x+1\right)\\ b,x^2-5xy+2x-10y\\ =x\left(x-5y\right)+2\left(x-5y\right)\\ =\left(x+2\right)\left(x-5y\right)\)
BÀI 2: Phân tích thành nhân tử .
`a, 3x(x+1)+9(x+1)`
`= (x+1)(3x+9)`
`=3(x+1)(x+3)`
`b,x^2-5xy+2x-10y`
`=x(x-5y)+2(x-5y)`
`=(x-5y)(x+2)`