Hãy chứng tỏ rằng nếu : \(\frac{a}{b}\)= \(\frac{c}{d}\)thì \(\frac{a^2+b^2}{b^2+c^2}\)= \(\frac{a}{c}\)
Bn nào trả lời nhanh và đúng nhất mk sẽ tick cho
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có :
\(A+3=\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b}+3\)
\(=\left(\frac{a}{b+c}+1\right)+\left(\frac{b}{a+c}+1\right)+\left(\frac{c}{a+b}+1\right)\)
\(=\frac{a+b+c}{b+c}+\frac{a+b+c}{a+c}+\frac{a+b+c}{a+b}\)
\(=\left(a+b+c\right)\left(\frac{1}{b+c}+\frac{1}{a+c}+\frac{1}{a+b}\right)\)
\(=2017.\frac{1}{2017}=1\)
\(\Rightarrow A=1-3=-2\)
\(\frac{a}{b}=\frac{c}{d}\)
=> \(\frac{a}{c}=\frac{b}{d}=>\frac{a^2}{c^2}=\frac{c^2}{d^2}=\frac{a.b}{b.c}=\frac{a}{c}\)
=> \(\frac{a^2+b^2}{b^2+c^2}=\frac{a}{c}\)
=> dpcm
Bạn làm như sau : Biến đổi vế phải tương tự vế trái rồi tìn a,b,c,d
\(\frac{2003}{273}=7+\frac{92}{273}=7+\frac{1}{\frac{273}{92}}=7+\frac{1}{2\frac{89}{92}}=7+\frac{1}{2+\frac{1}{\frac{92}{89}}}\)\(=7+\frac{1}{2+\frac{1}{1+\frac{3}{89}}}\) rồi làm tương tự .
Mình ko biết bấm công thức nhiều phân số nên bạn thông cảm tự làm tiếp nhé
từ đó suy ra : a=1 ; b=29 ; c=1 ; d=2 đúng thì sai thì khỏi không hiểu thì cứ phản hồi
a/\(\left(2-x\right)\times-3=\left(3x-1\right)\times4\)4
\(\Rightarrow-6+3x=12x-4\)
\(\Rightarrow-2=9x\)
\(\Rightarrow x=\frac{-2}{9}\)
bài b cx tương tự nha
ta có;\(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}=\frac{a-b}{c-d}=\frac{a+b}{c+d}\)(THEO TÍNH CHẤT DÃY TỈ SỐ BẰNG NHAU)
\(\Rightarrowđpcm\)
Bạn nên kiểm tra kĩ lại đề.
Đúng đề mà bn, ko sai đc đâu, mk chắc chắn mà.