Tìm giá trị lớn nhất của biểu thức K = 27 2x chia cho 12 x
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có :
Q = \(\frac{27-2x}{12-x}\)
\(=\frac{24-x}{12-x}+\frac{3}{12-x}=2+\frac{3}{12-x}\)
Q lớn nhất khi \(\frac{3}{12-x}\)lớn nhất
\(\Rightarrow12-x\)phải là số nguyên ( để x nguyên ) và nhỏ nhất với giá trị dương .
Gía trị dương nhỏ nhất là 1 .
Vì \(12-x=1\Rightarrow x=11\)
Vậy \(x=11\)thì Q lớn nhất .
\(E=\left(2x-5\right)^{10}-12\ge-12\)
Dấu "=" xảy ra \(\Leftrightarrow x=\dfrac{5}{2}\)
Vậy \(E_{min}=-12\Leftrightarrow x=\dfrac{5}{2}\)
\(F=\left(x+5\right)^8+\left|x+5\right|+22\ge22\)
Dấu "=" xảy ra \(\Leftrightarrow x=-5\)
Vậy \(F_{min}=22\Leftrightarrow x=-5\)
\(G=17-\left|3x-2\right|\)
Dấu "=" xảy ra \(x=\dfrac{2}{3}\)
Vậy \(G_{max}=17\Leftrightarrow x=\dfrac{2}{3}\)
\(K=17-\left|3x-2\right|-\left(2-3x\right)^{2020}\le17\)
Dấu "=" xảy ra \(\Leftrightarrow x=\dfrac{2}{3}\)
Vậy \(K_{max}=17\Leftrightarrow x=\dfrac{2}{3}\)
Ta có : \(B=\frac{27-2x}{12-x}=\frac{2\left(12-x\right)+3}{12-x}=2+\frac{3}{12-x}\)
Xét \(x>12\)thì B < 0 (1)
Xét x < 12 thì mẫu 12 - x là số nguyên dương . Phân số B có tử và mẫu đều dương,tử không đổi nên
B lớn nhất \(\Leftrightarrow\)mẫu 12 - x nhỏ nhất \(\Leftrightarrow\)12 - x = 1 \(\Leftrightarrow\)x = 11
Thay x = 11 ta có : \(2+\frac{3}{12-11}=2+\frac{3}{1}=5\)
Khi đó B = 5 (2)
So sánh 1 và 2 , ta thấy GTLN của B bằng 5 khi và chỉ khi x = 11
1) Xét rằng x > 7 <=> A < 0
Lại xét x < 7 thì mẫu là một số nguyên dương. P/s A có tử và mẫu đều là số dương, mà tử lại bất biến
A(max) <=> mẫu 7 - x nhỏ nhất <=> 7 - x = 1 => x = 7 - 1 = 6 <=> A = 1
Từ những điều trên thì A sẽ có GTLN khi và chỉ khi x = 6