Tìm các số a,b,c biết : (-2a2b3)10 + (3b2c4)15=0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) số liền trước của các số nguyên : 3 ; - 5 ; 0 ; 4 lần lượt là 2; -6; -1; 3
b) số liền sau của các số nguyên : - 10 ; - 5 ; 0 ; - 15 lần lượt là -9; -4; 1; -14
c) a = 0
(-2a2b3)10 + 3(b2c4)15 = 0
<=> (-2a2b3)10 + 3(bc2)30 = 0
<=> \(\hept{\begin{cases}-2a^2b^3=0\\bc^2=0\end{cases}}\)
<=> \(\orbr{\begin{cases}a=0\\b=0\end{cases}}\) và \(\orbr{\begin{cases}b=0\\c=0\end{cases}}\)
=> b = 0 hoặc a = c = 0
a, Ta có: 8 = 2 3 ; 10 = 2.5
BCNN(8; 10) = 2 3 .5 = 40
BC(8; 10) =B(40)= { 0; 40; 80; 120;………}
b, Ta có: 6 =2.3; 24= 2 3 . 3; 40 = 2 3 .5
BCNN( 6; 24; 40) = 2 3 .3. 5= 120
BC( 6; 24; 40)= B(120) ={ 0; 120; 240; 360….}
c, Ta có: 8 = 2 3 ; 15 = 3.5; 20 = 2 2 .5
BCNN(8; 15;20) = 2 3 .3.5 = 120
BC( 8; 15; 20)= B(120) ={ 0; 120; 240; 360….}
d, Ta có: 30 = 2.3.5; 45 = 3 2 .5
BCNN(30; 45) = 2. 3 2 .5 = 90
BC (30; 45) và nhỏ hơn 500 = { 0; 90; 180; 270; 360;480}
e, Ta có: a nhỏ nhất khác 0, biết rằng a ⋮ 15 và a ⋮ 18
=> a = BCNN (15; 18)
Có: 15 = 3.5; 18 = 2. 3 2
BCNN(15; 18) = 2. 3 2 .5 = 90
Vậy a = 90
f, Ta có: 63 = 3 2 .7; 35 = 5.7; 105 = 3.5.7
BCNN(63; 35; 105) = 3 2 .5.7 = 315
BC(63; 35; 105) và nhỏ hơn 1000 = { 0; 315; 630; 945}
a, Ta có: 8 = 2 3 ; 10 = 2.5
BCNN(8; 10) = 2 3 .5 = 40
BC(8; 10) =B(40)= { 0; 40; 80; 120;………}
b, Ta có: 6 =2.3; 24= 2 3 . 3; 40 = 2 3 .5
BCNN( 6; 24; 40) = 2 3 .3. 5= 120
BC( 6; 24; 40)= B(120) ={ 0; 120; 240; 360….}
c, Ta có: 8 = 2 3 ; 15 = 3.5; 20 = 2 2 .5
BCNN(8; 15;20) = 2 3 .3.5 = 120
BC( 8; 15; 20)= B(120) ={ 0; 120; 240; 360….}
d, Ta có: 30 = 2.3.5; 45 = 3 2 .5
BCNN(30; 45) = 2. 3 2 .5 = 90
BC (30; 45) và nhỏ hơn 500 = { 0; 90; 180; 270; 360;480}
e, Ta có: a nhỏ nhất khác 0, biết rằng a ⋮ 15 và a ⋮ 18
=> a = BCNN (15; 18)
Có: 15 = 3.5; 18 = 2. 3 2
BCNN(15; 18) = 2. 3 2 .5 = 90
Vậy a = 90
f, Ta có: 63 = 3 2 .7; 35 = 5.7; 105 = 3.5.7
BCNN(63; 35; 105) = 3 2 .5.7 = 315
BC(63; 35; 105) và nhỏ hơn 1000 = { 0; 315; 630; 945}
\(\left(-2a^2b^3\right)^{10}+\left(3b^2.c^4\right)^{15}=0\)
=>\(\left(2a^2b^3\right)^{10}+\left(3b^2.c^4\right)^{15}=0\)
=>\(b^{30}.\left(2a^{20}+3c^{60}\right)=0\)
=> \(b^{30}=0\)hoặc \(2a^{20}+3c^{60}=0\)
=> \(b=0\)hoặc \(a^{20}=0\)hoặc \(c^{60}=0\)( vì \(a^{20}\ge0\)và \(c^{60}\ge0\))
=> b = 0 hoặc a =0 hoặc c = 0
VÌ (-2a2b3)10+(3b2c4)15=0
=>(-2a2b3)10=(3b2c4)15=0
=>a=b=c=0