K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 3 2017

Từ \(abc=1\) VÀ \(a,b,c>0\) áp dụng BĐT AM-GM ta có: 

\(a+b+c\ge3;a^2+b^2+c^2\ge3\)

Ta có: \(VT=\frac{a^3}{\left(1+b\right)\left(1+c\right)}+\frac{b^3}{\left(1+c\right)\left(1+a\right)}+\frac{c^3}{\left(1+a\right)\left(1+b\right)}\)

\(=\frac{a^4}{\left(1+ab\right)\left(1+ac\right)}+\frac{b^4}{\left(1+bc\right)\left(1+ca\right)}+\frac{c^4}{\left(1+ca\right)\left(1+cb\right)}\)

\(=\frac{a^4}{a+ab+ac+1}+\frac{b^4}{b+bc+ba+1}+\frac{c^4}{c+ca+cb+1}\)

Áp dụng BĐT Cauchy-Schwarz dạng Engel ta có:

\(VT\ge\frac{\left(a^2+b^2+c^2\right)^2}{a+b+c+2\left(ab+bc+ca\right)+3}\)

\(\Rightarrow VT\ge\frac{\left(a^2+b^2+c^2\right)^2}{2\left(a+b+c\right)+2\left(ab+bc+ca\right)}\left(a+b+c\ge3\right)\)

\(\Rightarrow VT\ge\frac{\left(a^2+b^2+c^2\right)^2}{3\left(a^2+b^2+c^2+1\right)}\)( dễ c/m rằng \(3\left(a^2+b^2+c^2+1\right)\ge2\left(a+b+c+ab+bc+ca\right)\))

Vậy ta cần c/m \(\frac{\left(a^2+b^2+c^2\right)^2}{3\left(a^2+b^2+c^2+1\right)}\ge\frac{3}{4}\left(1\right)\)

Đặt \(a^2+b^2+c^2=t\ge3\). Ta có: 

\(\left(1\right)\Leftrightarrow\left(t-3\right)\left(4t+3\right)\ge0\forall t\ge3\)

Đẳng thức xảy ra khi a=b=c=1

27 tháng 3 2017

Hay sử dụng Am-GM ta có: 

\(\frac{a^3}{\left(1+a\right)\left(1+b\right)}+\frac{1+a}{8}+\frac{1+b}{8}\ge\frac{3}{4}a\) 

Thiết lập 2 BĐT tương tự r` cộng theo vế

24 tháng 10 2017

b/ Đa số các bài bất 2 luôn đưa về dạng (a+b)(a-b)2 ( kinh nghiệm của t)

Ta có \(a^3+b^3\ge ab\left(a+b\right)\)

<=> \(12a^3-ab\left(a+b\right)\ge11a^3-b^3\)

<=> \(\left(3a-b\right)\left(4a^2+ab\right)\ge11a^3-b^3\)

<=> \(3a-b\ge\frac{11a^3-b^3}{4a^2+ab}\)

Hoặc cậu có thể đặt \(\frac{11a^3-b^3}{4a^2+ab}\le ma+nb\)

câu a dùng minkopki

27 tháng 3 2017

Bài 1:

Áp dụng BĐT AM-GM ta có: 

\(a+b\ge2\sqrt{ab}\)

\(9+ab\ge2\sqrt{9ab}=6\sqrt{ab}\)

\(\Rightarrow VT=a+b\ge\frac{2\sqrt{ab}\cdot6\sqrt{ab}}{9+ab}=\frac{12ab}{9+ab}=VP\)

Bài 2: 

a)\(\frac{a^2}{a+2b^2}=a-\frac{2ab^2}{a+2b^2}\ge a-\frac{2ab^2}{3\sqrt[3]{ab^4}}=a-\frac{2}{3}\sqrt[3]{a^2b^2}\)

\(BDT\Leftrightarrow\sqrt[3]{a^2b^2}+\sqrt[3]{b^2c^2}+\sqrt[3]{c^2a^2}\le3\)

Áp dụng BĐT AM-GM ta có: 

\(\sqrt[3]{b^2c^2}\le\frac{1}{3}\left(bc+b+c\right)\). Tương tự r` cộng theo vế ta có ĐPCM

b)\(\frac{a^2}{a+2b^3}=a-\frac{2ab^2}{a+2b^3}\ge a-\frac{2ab^3}{3\sqrt[3]{ab^6}}=a-\frac{2}{3}b\sqrt[3]{a^2}\)

\(\ge a-\frac{2}{3}b\frac{\left(a+a+1\right)}{3}=a-\frac{2b}{9}-\frac{4ab}{9}\)

Vậy \(VT\ge a+b+c-\frac{2}{9}\left(a+b+c\right)-\frac{4}{9}\left(ab+bc+ca\right)\)

\(\ge\frac{7}{3}-\frac{4\left(a+b+c\right)^2}{27}=1=VP\)

28 tháng 3 2017

thắng đánh máy mấy bài này có mỏi tay ko

27 tháng 8 2017

bài 1

<=> \(\frac{bc}{a\left(a+b+c\right)+bc}\)

sử dụng tiếp cauchy sharws

Bài 2: đặt a=x/y, b=y/x, c=z/x

28 tháng 4 2020

Cm \(3\left(a^2b+b^2c+c^2a\right)\left(a^2c+b^2a+c^2b\right)\ge abc\left(a+b+c\right)^3\)

Do 2 vế BĐT đồng bậc nên ta chuẩn hóa \(a+b+c=3\)

BĐT <=> \(3\left[abc\left(a^3+b^3+c^3\right)+\left(a^3b^3+b^3c^3+a^3c^3\right)+a^2b^2c^2\left(a+b+c\right)\right]\ge27abc\)

<=>\(3\left[abc\left(a^3+b^3+c^3\right)+\left(a^3b^3+b^3c^3+a^3c^3+3a^2b^2c^2\right)\right]\ge27abc\)

Áp dụng BĐT Schur ta có:

\(a^3b^3+b^3c^3+a^3c^3+3a^2b^2c^2\ge ab^2c\left(ab+bc\right)+a^2bc\left(ab+ac\right)+abc^2\left(ac+bc\right)\)

Khi đó BĐT 

<=>\(3\left(a^3+b^3+c^3\right)+3a^2\left(b+c\right)+3b^2\left(a+c\right)+3c^2\left(a+b\right)\ge27\)

<=> \(3\left(a^3+b^3+c^3\right)+3a^2\left(3-a\right)+3b^2\left(3-b\right)+3c^2\left(3-c\right)\ge27\)

<=> \(a^2+b^2+c^2\ge3\) luôn đúng do \(a^2+b^2+c^2\ge\frac{1}{3}\left(a+b+c\right)^2=3\)( ĐPCM)

Dấu bằng xảy ra khi a=b=c

26 tháng 5 2020

Bài 2 

Áp dụng \(x^2+y^2\ge\frac{\left(x+y\right)^2}{2}\)

=> \(VT\ge\frac{|a+1-b|+|b+1-c|+|c+1-a|}{\sqrt{2}}\)

Áp dụng BĐT \(|x|+|y|+|z|\ge|x+y+z|\)

=> \(VT\ge\frac{|a+1-b+b+1-c+c+1-a|}{\sqrt{2}}=\frac{3}{\sqrt{2}}\)(ĐPCM)

Dấu bằng xảy ra khi \(a=b=c=\frac{1}{2}\)

https://www.google.com/search?q=cho+abc%3D1.+cm+1%2F2a%5E3%2Bb%5E3%2Bc%5E3%2B2%3C1%2F2&rlz=1C1NHXL_viVN846VN846&oq=cho+abc%3D1.+cm+1%2F2a%5E3%2Bb%5E3%2Bc%5E3%2B2%3C1%2F2&aqs=chrome..69i57.4867j0j7&sourceid=chrome&ie=UTF-8

29 tháng 4 2019

Áp dụng BĐT AM-GM ta có:

\(\frac{1}{a}+\frac{1}{b}\ge\frac{2}{\sqrt{ab}}\ge\frac{2}{\frac{a+b}{2}}=\frac{4}{a+b}\)

\(\Leftrightarrow\frac{1}{a+b}\le\frac{1}{4}.\left(\frac{1}{a}+\frac{1}{b}\right)\)

Dấu " = " xảy ra <=> a=b

Áp dụng : 

\(\frac{1}{2a^3+b^3+c^3+2}=\frac{1}{\left(a^3+b^3+1\right)+\left(a^3+c^3+1\right)}\le\frac{1}{4}.\left(\frac{1}{a^3+b^3+1}+\frac{1}{a^3+c^3+1}\right)\)

Tương tự: \(\frac{1}{2b^3+c^3+a^3+2}=\frac{1}{\left(a^3+b^3+1\right)+\left(b^3+c^3+1\right)}\le\frac{1}{4}.\left(\frac{1}{a^3+b^3+1}+\frac{1}{b^3+c^3+1}\right)\)

                 \(\frac{1}{2c^3+b^3+a^3+2}=\frac{1}{\left(c^3+b^3+1\right)+\left(a^3+c^3+1\right)}\le\frac{1}{4}.\left(\frac{1}{c^3+b^3+1}+\frac{1}{a^3+c^3+1}\right)\)

Cộng vế với vế của 3 BĐT trên ta có:

\(\Sigma\frac{1}{2a^3+b^3+c^3+2}\le\frac{1}{4}.2.\left(\frac{1}{a^3+b^3+1}+\frac{1}{b^3+c^3+1}+\frac{1}{c^3+a^3+1}\right)\)\(=\frac{1}{2}.\left(\frac{1}{a^3+b^3+1}+\frac{1}{b^3+c^3+1}+\frac{1}{c^3+a^3+1}\right)\)

Ta chứng minh BĐT phụ:

\(a^3+b^3\ge ab\left(a+b\right)\)

Thật vậy!

Có: \(\left(a-b\right)^2\ge0\)

\(\Leftrightarrow a^2+b^2-ab\ge ab\)

\(\Leftrightarrow\left(a+b\right)\left(a^2+b^2-ab\right)\ge ab\left(a+b\right)\)( vì a,b>0 => a+b>0)

\(\Leftrightarrow a^3+b^3\ge ab\left(a+b\right)\)

                              đpcm

Dấu " = " xảy ra <=> a=b

Áp dụng: \(\frac{1}{a^3+b^3+1}\le\frac{1}{ab\left(a+b\right)+abc}=\frac{1}{ab\left(a+b+c\right)}\)

Tương tự:\(\frac{1}{b^3+c^3+1}\le\frac{1}{bc\left(b+c\right)+abc}=\frac{1}{bc\left(a+b+c\right)}\) 

               \(\frac{1}{a^3+c^3+1}\le\frac{1}{ac\left(a+c\right)+abc}=\frac{1}{ac\left(a+b+c\right)}\)

Cộng vế với vế của 3 BĐT trên ta có:

\(\frac{1}{a^3+b^3+1}+\frac{1}{b^3+c^3+1}+\frac{1}{c^3+a^3+1}\le\)\(\frac{1}{ab\left(a+b\right)}+\frac{1}{bc\left(b+c\right)}+\frac{1}{ca\left(a+c\right)}=\frac{a+b+c}{abc\left(a+b+c\right)}=1\)

\(\Rightarrow\Sigma\frac{1}{2a^3+b^3+c^3+2}\le\frac{1}{2}.\left(\frac{1}{a^3+b^3+1}+\frac{1}{b^3+c^3+1}+\frac{1}{c^3+a^3+1}\right)\le\frac{1}{2}.1=\frac{1}{2}\)

Dấu " = " xảy ra <=> a=b=c=1 

Tham khảo nhé~

16 tháng 9 2018

mk chỉ nêu cách giải thôi nha. Đây là cách mk nghĩ ra nên không đúng lắm. Bạn sắp xếp lại cho hợp lí nhá.

Đặt A=\(\dfrac{a}{2a+b+c}+\dfrac{b}{a+2b+c}+\dfrac{c}{a+b+2c}\) 

\(\Rightarrow \dfrac {1}{A}=\dfrac{2a+b+c}{a}+\dfrac{a+2b+c}{b}+\dfrac{a+b+2c}{c}\) \(=6+(\dfrac {a}{b}+\dfrac{b}{a})+(\dfrac {b}{c}+\dfrac{c}{b})+(\dfrac {a}{c}+\dfrac{c}{a})\)

vì \(a,b,c\geq 0\) Áp dụng bất đẳng thức Cauchy ta có:

\((\dfrac {a}{b}+\dfrac{b}{a})\geq 2\sqrt{\dfrac{a}{b}.\dfrac{b}{a}}\) \(=2\)

tương tự ta có:

\(6+(\dfrac {a}{b}+\dfrac{b}{a})+(\dfrac {b}{c}+\dfrac{c}{b})+(\dfrac {a}{c}+\dfrac{c}{a})\geq 6+2+2+2=12\) 

\(\Rightarrow \dfrac {1}{A}\geq 12\) (1)

theo đề bài \(A\leq \dfrac{3}{4}\) \(\Rightarrow \dfrac{1}{A}\geq \dfrac{4}{3} \Leftrightarrow \dfrac{1}{A}-\dfrac{4}{3} \geq 0\) (2)

từ(1) và(2) \(\Rightarrow \dfrac{1}{A}-\dfrac{4}{3} \geq 12-\dfrac{4}{3} \geq 0\) luôn đúng

Dấu" =" xảy ra khi a=b=c

16 tháng 9 2018

giải xong rồi cứ thấy có gì đó sai sai