Cho tam giác ABC cân tại A. Gọi M,N lần lượt là trung điểm của AC, AB.
a) CM: tam giác ABM = tam giác ACN
b) CM: tam giác BMC = tam giác CNB
c) Trên tia đối của MB lấy điểm E sao cho: MB = ME
Trên tia đối của NC lấy điểm F sao cho: NC = NF
CM: A là trung điểm của EF
XÉT \(\Delta ABM\) VÀ \(\Delta ACN\) CÓ
AB=AC (GT)
AN=AM (GT)
\(\widehat{B}=\widehat{C}\) (VÌ TAM GIÁC ABC CÂN TẠI A)
=>\(\Delta AMB=\Delta ANC\left(cgc\right)\)
b;VÌ TAM GIÁC AMB=TAM GIÁC ANC =>BM=NC
XÉT \(\Delta BNC\) VÀ \(\Delta BMC\) CÓ
BM=NC
\(\widehat{MBC}=\widehat{NCB}\)
GÓC C CHUNG
=>AM GIÁC BNC=TAM GIÁC BMC (GCG)
C;