So sánh
A=97^98+1/ 97^99+1 va B=97^97+1/ 97^98+1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(1+\frac{99}{98}-\frac{98}{97}+\frac{1}{97.98}\)
\(=1+1+\frac{1}{98}-\left(1+\frac{1}{97}\right)+\frac{1}{97}-\frac{1}{98}\)
\(=1+1+\frac{1}{98}-1-\frac{1}{97}+\frac{1}{97}-\frac{1}{98}\)
\(=1+1-1\)
\(=1\)
\(\frac{99}{98}-\frac{98}{97}+\frac{1}{97\times98}\)
\(=\left(1+\frac{1}{98}\right)-\left(1+\frac{1}{97}\right)+\frac{1}{97\times98}\)
\(=\frac{1}{98}-\frac{1}{97}+\frac{1}{97\times98}\)
\(=\frac{-1}{97\times98}+\frac{1}{97\times98}\)
\(=0\)
\(\frac{99}{98}\)- \(\frac{98}{97}\)+ \(\frac{1}{97}\)* 98
=\(\frac{9603}{9506}\)-\(\frac{9604}{9506}\)+ \(\frac{98}{9506}\)* \(\frac{98}{1}\)
-Sai đề rồi bạn nhé!
đề :
= 1/100 - (1 / 100.99 +1/99.98 + ...+ 1/3.2 +1/2.1 )
=1/100 - (1 /1.2 +1/ 2.3 +...+ 1/ 98.99 +1 / 99.100)
=1/100 -( 1- 1/ 2 +1/2 -1/3 +...+1/98 -1/99 +1/99 -1/100)
=1/100 - ( 1- 1/100)
=1/100 - 99 /100
= -98/100
= -49 /50
(91-99+98)-(-99+98)=91-99+98+99-98=91
(99-98+97)-(99+97+98)=99-98+97-99-97-98=(-98)*2=-196
Ta có: \(A=\frac{97^{98}+1}{97^{99}+1}\Rightarrow97A=\frac{97^{99}+97}{97^{99}+1}=\frac{97^{99}+1+96}{97^{99}+1}=1+\frac{96}{97^{99}+1}\)
\(B=\frac{97^{97}+1}{97^{98}+1}\Rightarrow97B=\frac{97^{98}+97}{97^{98}+1}=\frac{97^{98}+1+96}{97^{98}+1}=1+\frac{96}{97^{98}+1}\)
Vì \(\frac{96}{97^{99}+1}< \frac{96}{97^{98}+1}\Rightarrow1+\frac{96}{97^{99}+1}< 1+\frac{96}{97^{98}+1}\Rightarrow97A< 97B\Rightarrow A< B\)
Vậy A < B
Ta thấy A < 1 và 96 > 1 nên ta có:
A < 9798 + 1 + 96 / 9799 + 1 + 96
=> A < 9798 + 97 / 9799 + 97
=> A < 97(9797 + 1) / 97(9798 + 1)
=> A < 9797 + 1 / 9798 + 1 = B
=> A < B