K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 6 2015

Xét A=2n+1/3n+1

Gọi d là ƯCLN của 2n+1 và 3n+1, ta có

2n+1 chia hết cho d \(\Rightarrow\)3(2n+1) chia hết cho d \(\Rightarrow\)6n+3 chia hết cho d (1)

3n+1 chia hết cho d \(\Rightarrow\)2(3n+1) chia hết cho d \(\Rightarrow\)6n+2 chia hết cho d (2)

Lấy (1) - (2), ta có:

6n+3-(6n+2) chia hết cho d \(\Rightarrow\)6n+3-6n-2 chia hết cho d \(\Rightarrow\)(6n-6n)+(3-2) chia hết cho d

                                        \(\Rightarrow\)1 chia hết cho d \(\Rightarrow\)d=1

Vì ƯCLN(2n+1;3n+1)=1 nên 2n+1 và 3n+1 là hai số nguyên tố cùng nhau. Do đó A=2n+1/3n+1 là phân số tối giản (đpcm)

 

Xét B=12+1/30+1

Cách giải tương tự như trên, ta có 5(12n+1)-2(30n+2) chia hết cho d

                                              \(\Rightarrow\)60n+5-(60n+4) chia hết cho d

                                              \(\Rightarrow\)1 chia hết cho d

                                              \(\Rightarrow\)d=1

Suy ra B=12n+1/30n+2 là phân số tối giản (đpcm)

20 tháng 7 2016

Gọi d = ƯCLN(2n + 1; 3n + 2) (d thuộc N*)

=> 2n + 1 chia hết cho d; 3n + 2 chia hết cho d

=> 3.(2n + 1) chia hết cho d; 2.(3n + 2) chia hết cho d

=> 6n + 3 chia hết cho d; 6n + 4 chia hết cho d

=> (6n + 4) - (6n + 3) chia hết cho d

=> 6n + 4 - 6n - 3 chia hết cho d

=> 1 chia hết cho d

Mà d thuộc N* => d = 1

=> ƯCLN(2n + 1; 3n + 2) = 1

Chứng tỏ phân số 2n + 1/3n + 2 tối giản

12 tháng 11 2021

b: Vì 12n+1 là số lẻ

và 30n+2 là số chẵn

nên 12n+1/30n+2 là phân số tối giản

24 tháng 3 2020

a) Câu hỏi của ☪Ņĥøķ Ņģøç☪ - Toán lớp 6 - Học toán với OnlineMath

18 tháng 2 2023

Đặt \(d\) là \(\text{Ư}CLN\) \(\left(12n+1;30n+2\right)\)

Theo bài ra: \(12n+1⋮d\Rightarrow5.\left(12n+1\right)⋮d\left(1\right)\)

                    \(30n+2⋮d\Rightarrow2\left(30n+2\right)⋮d\left(2\right)\)

Từ \(\left(1\right)\) và \(\left(2\right)\) \(\Rightarrow\) \(5.\left(12n+1\right)-2.\left(30n+2\right)⋮d\)

\(\Rightarrow1⋮d\)

\(\Rightarrow d=1\)

Mà phân số tối giản thì có \(\text{Ư}CLN\) của tử số và mẫu số là 1

Vậy \(\dfrac{12n+1}{30n+2}\) là phân số tối giản

11 tháng 9 2018

22 tháng 8 2015

b) d = ƯCLN (21n + 4; 14n + 3)

=> 21n + 4 chia hết cho d và 14n + 3 chia hết cho d

=> 2. (21n + 4) chia hết cho d và 3. (14n + 3) chia hết cho d

=> 42n + 8 và 42n + 9 chia hết cho d

=> (42n + 9) - (42n + 8) = 1 chia hết cho d => d = 1

=> 21n + 4 và 14n + 3 nguyên tố cùng nhau => PS đã cho tối giản

a) d= ƯCLN (3n + 1; 5n + 2)

=> 5n + 2 chia hết cho d và 3n + 1 chia hết cho d

=> 3. (5n + 2) chia hết cho d và 5. (3n + 1) chia hết cho d

=> 15n + 6 và 15n + 5 chia hết cho d

=> (15n + 6) - (15n + 5) = 1 chia hết cho d => d = 1

=> 3n + 1 và 5n + 2 nguyên tố cùng nhau => PS đã cho tối giản

22 tháng 8 2015

b) d = ƯCLN (21n + 4; 14n + 3)

=> 21n + 4 chia hết cho d và 14n + 3 chia hết cho d

=> 2. (21n + 4) chia hết cho d và 3. (14n + 3) chia hết cho d

=> 42n + 8 và 42n + 9 chia hết cho d

=> (42n + 9) - (42n + 8) = 1 chia hết cho d => d = 1

=> 21n + 4 và 14n + 3 nguyên tố cùng nhau => PS đã cho tối giản

 

Gọi \(d\inƯC\left(12n+1;30n+2\right)\)

\(\Leftrightarrow\left\{{}\begin{matrix}12n+1⋮d\\30n+2⋮d\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}60n+5⋮d\\60n+4⋮d\end{matrix}\right.\)

\(\Leftrightarrow60n+5-60n-4⋮d\)

\(\Leftrightarrow1⋮d\)

\(\Leftrightarrow d\inƯ\left(1\right)\)

\(\Leftrightarrow d\in\left\{1;-1\right\}\)

\(\LeftrightarrowƯCLN\left(12n+1;30n+2\right)=1\)

hay phân số \(A=\dfrac{12n+1}{30n+2}\) là phân số tối giản(đpcm)

19 tháng 3 2021

Gọi d∈ƯC(12n+1;30n+2)d∈ƯC(12n+1;30n+2)

⇔⎧⎨⎩12n+1⋮d30n+2⋮d⇔⎧⎨⎩60n+5⋮d60n+4⋮d⇔{12n+1⋮d30n+2⋮d⇔{60n+5⋮d60n+4⋮d

⇔60n+5−60n−4⋮d⇔60n+5−60n−4⋮d

⇔1⋮d⇔1⋮d

⇔d∈Ư(1)⇔d∈Ư(1)

⇔d∈{1;−1}⇔d∈{1;−1}

⇔ƯCLN(12n+1;30n+2)=1⇔ƯCLN(12n+1;30n+2)=1

vậy A=12n+130n+2A=12n+130n+2 là phân số tối giản

25 tháng 8 2018

a) Gọi ƯCLN(3n+1;5n+2) là d

ta có: 3n+1 chia hết cho d => 15n + 5 chia hết cho d

5n + 2 chia hết cho d => 15n + 6 chia hết cho d

=> 15n + 6 - 15n - 5 chia hết cho d

=> 1 chia hết cho d

=> 3n+1/5n+2 là phân số tối giản

25 tháng 8 2018

gọi d là ƯC(3n + 1; 5n + 2)  (d thuộc Z)

\(\Rightarrow\hept{\begin{cases}3x+1⋮d\\5n+2⋮d\end{cases}\Rightarrow\hept{\begin{cases}5\left(3n+1\right)⋮d\\3\left(5n+2\right)⋮d\end{cases}\Rightarrow\hept{\begin{cases}15n+5⋮d\\15n+6⋮d\end{cases}}}}\)

=> (15n + 5) - (15n + 6) ⋮ d

=> 15n + 5 - 15n - 6 ⋮ d

=> (15n - 15n) - (6 - 5) ⋮ d

=> 0 - 1 ⋮ d

=> 1 ⋮ d

=> d = 1 hoặc d = -1

vậy \(\frac{3n+1}{5n+2}\) là phân số tối giản với mọi n thuộc N