K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 8 2015

b) d = ƯCLN (21n + 4; 14n + 3)

=> 21n + 4 chia hết cho d và 14n + 3 chia hết cho d

=> 2. (21n + 4) chia hết cho d và 3. (14n + 3) chia hết cho d

=> 42n + 8 và 42n + 9 chia hết cho d

=> (42n + 9) - (42n + 8) = 1 chia hết cho d => d = 1

=> 21n + 4 và 14n + 3 nguyên tố cùng nhau => PS đã cho tối giản

a) d= ƯCLN (3n + 1; 5n + 2)

=> 5n + 2 chia hết cho d và 3n + 1 chia hết cho d

=> 3. (5n + 2) chia hết cho d và 5. (3n + 1) chia hết cho d

=> 15n + 6 và 15n + 5 chia hết cho d

=> (15n + 6) - (15n + 5) = 1 chia hết cho d => d = 1

=> 3n + 1 và 5n + 2 nguyên tố cùng nhau => PS đã cho tối giản

22 tháng 8 2015

b) d = ƯCLN (21n + 4; 14n + 3)

=> 21n + 4 chia hết cho d và 14n + 3 chia hết cho d

=> 2. (21n + 4) chia hết cho d và 3. (14n + 3) chia hết cho d

=> 42n + 8 và 42n + 9 chia hết cho d

=> (42n + 9) - (42n + 8) = 1 chia hết cho d => d = 1

=> 21n + 4 và 14n + 3 nguyên tố cùng nhau => PS đã cho tối giản

 

24 tháng 6 2015

Xét A=2n+1/3n+1

Gọi d là ƯCLN của 2n+1 và 3n+1, ta có

2n+1 chia hết cho d \(\Rightarrow\)3(2n+1) chia hết cho d \(\Rightarrow\)6n+3 chia hết cho d (1)

3n+1 chia hết cho d \(\Rightarrow\)2(3n+1) chia hết cho d \(\Rightarrow\)6n+2 chia hết cho d (2)

Lấy (1) - (2), ta có:

6n+3-(6n+2) chia hết cho d \(\Rightarrow\)6n+3-6n-2 chia hết cho d \(\Rightarrow\)(6n-6n)+(3-2) chia hết cho d

                                        \(\Rightarrow\)1 chia hết cho d \(\Rightarrow\)d=1

Vì ƯCLN(2n+1;3n+1)=1 nên 2n+1 và 3n+1 là hai số nguyên tố cùng nhau. Do đó A=2n+1/3n+1 là phân số tối giản (đpcm)

 

Xét B=12+1/30+1

Cách giải tương tự như trên, ta có 5(12n+1)-2(30n+2) chia hết cho d

                                              \(\Rightarrow\)60n+5-(60n+4) chia hết cho d

                                              \(\Rightarrow\)1 chia hết cho d

                                              \(\Rightarrow\)d=1

Suy ra B=12n+1/30n+2 là phân số tối giản (đpcm)

20 tháng 7 2016

Gọi d = ƯCLN(2n + 1; 3n + 2) (d thuộc N*)

=> 2n + 1 chia hết cho d; 3n + 2 chia hết cho d

=> 3.(2n + 1) chia hết cho d; 2.(3n + 2) chia hết cho d

=> 6n + 3 chia hết cho d; 6n + 4 chia hết cho d

=> (6n + 4) - (6n + 3) chia hết cho d

=> 6n + 4 - 6n - 3 chia hết cho d

=> 1 chia hết cho d

Mà d thuộc N* => d = 1

=> ƯCLN(2n + 1; 3n + 2) = 1

Chứng tỏ phân số 2n + 1/3n + 2 tối giản

20 tháng 12 2022

a: Gọi d=ƯCLN(15n+1;30n+1)

=>30n+2-30n-1 chia hết cho d

=>1 chia hết cho d

=>Đây là phân số tối giản

b: Gọi d=ƯCLN(3n+2;5n+3)

=>15n+10-15n-9 chia hết cho d

=>1 chia hết cho d

=>d=1

=>Phân số tối giản

18 tháng 2 2023

Đặt \(d\) là \(\text{Ư}CLN\) \(\left(12n+1;30n+2\right)\)

Theo bài ra: \(12n+1⋮d\Rightarrow5.\left(12n+1\right)⋮d\left(1\right)\)

                    \(30n+2⋮d\Rightarrow2\left(30n+2\right)⋮d\left(2\right)\)

Từ \(\left(1\right)\) và \(\left(2\right)\) \(\Rightarrow\) \(5.\left(12n+1\right)-2.\left(30n+2\right)⋮d\)

\(\Rightarrow1⋮d\)

\(\Rightarrow d=1\)

Mà phân số tối giản thì có \(\text{Ư}CLN\) của tử số và mẫu số là 1

Vậy \(\dfrac{12n+1}{30n+2}\) là phân số tối giản

26 tháng 4 2016

Tôi giải đúng ko các cậu?

Gọi d = ƯC (12n +1;30n +2).

      Ta có:  (12n +1) chia hết cho  d  và (30n + 2) chia hết cho  d  =>

5(12n +1)  chia hết cho d  và 2(30n + 2) chia hết cho  d

[5(12n +1) – 2(30n +2)]  chia hết cho d  =>  1 chia hết cho  d  => d =   ±  1

=>$ \frac{12n+1}{30n+2}$ là phân số tối giản (n  N*)

26 tháng 4 2016

Gọi d = ƯC (12n +1;30n +2).

      Ta có:  (12n +1) chia hết cho  d  và (30n + 2) chia hết cho  d  =>

5(12n +1)  chia hết cho d  và 2(30n + 2) chia hết cho  d

[5(12n +1) – 2(30n +2)]  chia hết cho d  =>  1 chia hết cho  d  => d =   ±  1

=>$ \frac{12n+1}{30n+2}$ là phân số tối giản (n  N*)

8 tháng 3 2018

Gọi ƯCLN của tử và mẫu là d. 

Ta có : \(12n+1⋮d\) hay \(60n+5⋮d\)

             \(30n+2⋮d\) hay \(60n+4⋮d\)

=> \(60n+5-60n-4⋮d\) hay \(1⋮d\)

=> d=1 vậy phân số tối giản.

8 tháng 3 2018

hai phân số đó không thể Cung chia hết cho một số tự nhiên nao lớn hơn 1 nên là phân số tối giản

24 tháng 3 2020

a) Câu hỏi của ☪Ņĥøķ Ņģøç☪ - Toán lớp 6 - Học toán với OnlineMath