K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: P đối xứng A qua BC

nên BC là trung trực của AP

=>BA=BP; CA=CP và AP vuông góc với BC

mà BA=AC

nên BA=BP=CA=CP

ΔABC cân tại A

mà AP là đường cao

nên AP là trung trực của BC

mà O nằm tren đường trung trực của BC

nên A,O,P thẳng hàng

b: Xét (O) có

ΔAMK nội tiếp

AK là đường kính

=>ΔAMK vuông tại M

Xét tứ giác AIEM có

góc AIE+góc AME=180 độ

nên AIEM là tứ giác nội tiếp

18 tháng 8 2018

minh moi bn vao link nay dang ky roi tra loi minigame nha : https://alfazi.edu.vn/question/5b7768199c9d707fe5722878

19 tháng 8 2018

A B C O D E I

Gọi tiếp điểm của đường tròn (I) với AB và (O;R) theo thứ tự là D và E.

Đường tròn (I) tiếp xúc trong với (O;R) tại E nên 4 điểm A;O;I;E thẳng hàng.

Ta có: AO là phân giác của ^BAC (Do \(\Delta\)ABC đều nội tiếp (O))

=> AI là phân giác ^BAC => ^DAI = ^BAC / 2 = 300 

AB tiếp xúc với (I) tại D => ^ADI = 900

Xét \(\Delta\)AID có: ^ADI = 900; ^DAI = 300 => \(\Delta\)AID nửa đều \(\Rightarrow\frac{ID}{AI}=\frac{1}{2}\)

Hay \(\frac{IE}{AI}=\frac{1}{2}\Rightarrow\frac{IE}{AE}=\frac{1}{3}\)(Do A;I;E thẳng hàng) \(\Rightarrow IE=ID=\frac{2R}{3}\)

Thấy ^ABE chắn nửa đg tròn (O;R) => ^ABE = 900 => BE vuông góc AB. Mà ID vuông góc AB

=> ID // BE => \(\frac{IE}{AE}=\frac{BD}{AB}=\frac{1}{3}\)(Theo ĐL Thales)

Áp dụng ĐL Pytagorean ta dễ dàng tính được: \(AB=R.\sqrt{3}\)\(\Rightarrow BD=\frac{AB}{3}=\frac{R}{\sqrt{3}}\)

Trong \(\Delta\)BDI có ^IDB = 900 . Áp dụng ĐL Pytagorean:

\(IB=\sqrt{BD^2+ID^2}=\sqrt{\frac{R^2}{3}+\frac{4R^2}{9}}=\sqrt{\frac{7R^2}{9}}=\frac{R.\sqrt{7}}{3}\)

ĐS: .....