K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 8 2018

minh moi bn vao link nay dang ky roi tra loi minigame nha : https://alfazi.edu.vn/question/5b7768199c9d707fe5722878

19 tháng 8 2018

A B C O D E I

Gọi tiếp điểm của đường tròn (I) với AB và (O;R) theo thứ tự là D và E.

Đường tròn (I) tiếp xúc trong với (O;R) tại E nên 4 điểm A;O;I;E thẳng hàng.

Ta có: AO là phân giác của ^BAC (Do \(\Delta\)ABC đều nội tiếp (O))

=> AI là phân giác ^BAC => ^DAI = ^BAC / 2 = 300 

AB tiếp xúc với (I) tại D => ^ADI = 900

Xét \(\Delta\)AID có: ^ADI = 900; ^DAI = 300 => \(\Delta\)AID nửa đều \(\Rightarrow\frac{ID}{AI}=\frac{1}{2}\)

Hay \(\frac{IE}{AI}=\frac{1}{2}\Rightarrow\frac{IE}{AE}=\frac{1}{3}\)(Do A;I;E thẳng hàng) \(\Rightarrow IE=ID=\frac{2R}{3}\)

Thấy ^ABE chắn nửa đg tròn (O;R) => ^ABE = 900 => BE vuông góc AB. Mà ID vuông góc AB

=> ID // BE => \(\frac{IE}{AE}=\frac{BD}{AB}=\frac{1}{3}\)(Theo ĐL Thales)

Áp dụng ĐL Pytagorean ta dễ dàng tính được: \(AB=R.\sqrt{3}\)\(\Rightarrow BD=\frac{AB}{3}=\frac{R}{\sqrt{3}}\)

Trong \(\Delta\)BDI có ^IDB = 900 . Áp dụng ĐL Pytagorean:

\(IB=\sqrt{BD^2+ID^2}=\sqrt{\frac{R^2}{3}+\frac{4R^2}{9}}=\sqrt{\frac{7R^2}{9}}=\frac{R.\sqrt{7}}{3}\)

ĐS: .....

a: ΔABC vuông tại A nên O là trung điểm của BC

Xét ΔCAB có CF/CA=CO/CB

nên FO//AB

=>FO vuông góc AC

góc AHO+góc AFO=180 độ

=>AHOF nội tiếp đường tròn đường kính AO

=>I là trung điểm  của AO

b: (O) và (I) đều đi qua A

OI=OA-IA=R-r'

=>(O) tiếp xúc (I) tại A

24 tháng 8 2019

a, HS tự làm

b, HS tự làm

c, Chú ý hình thang vuông OEFO’ và xét đường trung bình của hình thang này

d, Từ I kẻ đường thảng song song với EF cắt OE tại M , cắt O’F tại N

Đặt BH=2R; CH= 2R’

∆IOM vuông tại M có:

I M 2 = I O 2 - O M 2 =  R + r 2 - R - r 2 = 4 R r

Tương tự , ∆ION có  I N 2 = 4 R ' r

Suy ra IM+IN=EF=AH

Vậy  2 R r + 2 R ' r = 2 R R '

=>  r R + R ' = R R '

=> r =  R R ' R + R ' 2