K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 1 2022

-CN VUÔNG GÓC VỚI NM 1

-BM VUÔNG GÓC VỚI MN 2

THEO ĐỊNH LUẬT TỪ VUÔNG GÓC ĐẾN SONG SONG \(\Rightarrow\)CN SONG SONG VỚI BM.

\(\Rightarrow\)NC VUÔNG GÓC VỚI BC HAY GÓC NCB =90 ĐỘ. 3

TỪ 1, 2,3 SUY RA CBMN LÀ HÌNH CHỮ NHẬT \(\Rightarrow\)CN=BM

XÉT 2 TAM GIÁC MAB(  GÓC N =90 ĐỘ) VÀ TAM GIÁC NVA ( GÓC M = 90 ĐỘ )CÓ 

CA=AB( GT)

CN=BM( CMT)

\(\Rightarrow\)HAI TAM GIÁC TRÊN BẰNG NHAU ( CẠNH GÓC VUÔNG-CẠNH GÓC VUÔNG)

20 tháng 6 2016

a, Ta có:

góc CAN + BAM + BAC = 180 độ 

mà góc BAC = 90 ( tam giác ABC vuông cân tại A )

 \(\Rightarrow\)BAM + CAN = 90 độ ( 1 )

Xét tam giác MBA vuông tại M , ta có:

BAM + ABM  = 90 độ ( tổng 2 góc nhọn trong tam giác vuông ) ( 2 )

Từ ( 1 ) và ( 2 ) 

\(\Rightarrow\)CAN + BAM = BAM + ABM 

\(\Rightarrow\)CAN = ABM 

Xét tam giác vuông MAB và tam giác vuông NCA , ta có :

AB = AC ( tam giác ABC vuông cân tại A )

CAN = ABM 

\(\Rightarrow\)\(\Delta\)MAB = \(\Delta\)NCA ( ch - gn )

b, Vì \(\Delta MAB=\Delta NCA\)(CMT)

\(\Rightarrow\)AM = CN ( 2 cạnh tương ứng )

Xét \(\Delta MBA\)vuông tại M , ta có :

\(BM^2+AM^2=AB^2\)( định lý Py - ta - go )

mà AM = CN ( CMT )

\(\Rightarrow BM^2+CN^2=AB^2\)( ĐPCM)

20 tháng 6 2016

a) Đường thẳng d đi qua A mà k cắt BC => d // BC (1)

; BM  |  d ; CN  |  d => BM // CN (2)

Từ (1) và (2) => BM = CN (tính chất đoạn chắn)

Xét hai tam giác vuông MAB và NCA có :

AB = DC (do tam giác ABC vuông cân tại A)

BM = CD (cmt)

\(\Rightarrow\Delta MAB=\Delta NCA\) (cạnh huyền - cạnh góc vuông)

b) Từ \(\Delta MAB=\Delta NCA\) (câu a) \(\Rightarrow\widehat{A}=\widehat{C}\) và \(\widehat{B}=\widehat{A}\)

\(\Rightarrow\widehat{B}=\widehat{C}\) \(\Rightarrow\widehat{MAB}=\widehat{NAC}\) (3) (vì cụng phụ với 2 góc bằng nhau)

; mà \(\widehat{BAC}+\widehat{MAB}+\widehat{NAC}=180^o\) (kề bù) , \(\widehat{BAC}=90^o\)

\(\Rightarrow\widehat{MAB}+\widehat{NAC}=90^o\) (4)

Từ (3) và (4) \(\Rightarrow\widehat{MAB}=\widehat{NAC}=45^o\)

\(\Rightarrow\) Tam giác MAB vuông cân tại M

\(\Rightarrow AM=AB\)

Đã có BM = CN (cm a) \(\Rightarrow AM=CN\)

Xét tam giác vuông AMB có \(AB^2=BM^2+AM^2\) hay \(AB^2=BM^2+CN^2\)

a: Xét ΔABC có DE//BC

nên AD/AB=AE/AC
mà AB=AC
nên AD=AE
hay ΔADE cân tại A

b: Xét ΔMBD vuông tại M và ΔNCE vuông tại N có 

BD=CE

\(\widehat{BDM}=\widehat{CEN}\)

Do đó: ΔMBD=ΔNCE

c: Xét ΔDBC và ΔECB có 

DB=EC

\(\widehat{DBC}=\widehat{ECB}\)

BC chung

Do đó: ΔDBC=ΔECB

Suy ra: \(\widehat{ICB}=\widehat{IBC}\)

hay ΔIBC cân tại I

d: Ta có: IB=IC

nên I nằm trên đường trung trực của BC(1)

Ta có: AB=AC
nên A nằm trên đường trung trực của BC(2)

Từ (1) và (2) suy ra AI là đường trung trực của BC

Ta có: ΔABC cân tại A

mà AI là đường trung trực

nên AI là tia phân giác của góc BAC

15 tháng 2 2022

bạn vẽ hình giúp mình đcko

 

19 tháng 2 2018

Vẽ hình dùm đi bạn r giải hộ cho :)) Đề đọc khó hiểu tí 

8 tháng 3 2020

1 d A B C M N

2 tháng 2 2019

so sanh BM + CN voi MN chu ban nhi ?

tu ve hinh : 

goc MAB + goc BAC + goc CAN = 180 do M; A; N thang hang

ma goc BAC = 90 do tamgiac ABC vuong can tai A (gt)

=> goc MAB + goc CAN = 90 do 

MB | d (gt) => tamgiac ABM vuong tai M (dn) => goc MAB + goc MBA = 90 (tc)

=> goc MBA = goc CAN 

xet tamgiac AMB va tamgiac CNA co : AB = AC do tamgiac ABC vuong can tai A (gt)

goc BMA = goc CNA ...

=> tamgiac AMB = tamgiac CNA (ch - gn)

=> MB = AN va MA = NC (dn)

ma MA + AN = MN

=> MB + NC = MN

vay_

2 tháng 2 2019

điểm E và F ở đâu ra thế :v