K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 5 2021

\(A=\frac{3}{1^2.2^2}+\frac{5}{2^2.3^2}+\frac{7}{3^2.4^2}+...+\frac{19}{9^2.10^2}\)

\(=\frac{2^2-1^2}{1^2.2^2}+\frac{3^2-2^2}{2^2.3^2}+\frac{4^2-3^2}{3^2.4^2}+...+\frac{10^2-9^2}{9^2.10^2}\)

\(=\frac{2^2}{1^2.2^2}-\frac{1^2}{1^2.2^2}+\frac{3^2}{2^2.3^2}-\frac{2^2}{2^2.3^2}+\frac{4^2}{3^2.4^2}-\frac{3^2}{3^2.4^2}+...+\frac{10^2}{9^2.10^2}-\frac{9^2}{9^2.10^2}\)

\(=1-\frac{1}{2^2}+\frac{1}{2^2}-\frac{1}{3^2}+\frac{1}{3^2}-\frac{1}{4^2}+...+\frac{1}{9^2}-\frac{1}{10^2}=1-\frac{1}{10^2}< 1\)

15 tháng 11 2021

bạ tự là đi minh mới lớp 6 nhá

undefined

AH
Akai Haruma
Giáo viên
24 tháng 7 2021

Bạn tham khảo lời giải tại đây:

https://olm.vn/hoi-dap/detail/81621153379.html

20 tháng 8 2018

a)

\(3A=1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{99}}\)

\(3A-A=\left(1+\frac{1}{3}+...+\frac{1}{3^{99}}\right)-\left(\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{100}}\right)\)

\(2A=1-\frac{1}{3^{100}}\)

\(\Rightarrow2A< 1\)

\(\Rightarrow A< \frac{1}{2}\)

15 tháng 7

`3/(-10) ; 1/(-2) ; 4/(-5)=> -3/10 ; -1/2 ; -4/5`

ta có : `-1/2=(-1xx5)/(2xx5)=-5/10 ; -4/5=(-4xx2)/(5xx2)=-8/10`

vậy `3/(-10) < 1/(-2) < 4/(-5)`

`--------------------`

`2/(-10) ; 7/(-5) ; -1/2=>-2/10 ;-7/5;-1/2`

ta có : `-7/5=(-7xx2)/(5xx2)=-14/10; -1/2=(-1xx5)/(2xx5)=-5/10`

vậy `2/(-10) < -1/2 < 7/(-5)`

`---------------------`

`7/(-4) ; -2/5 ; -3/10=> -7/4;-2/5;-3/10`

ta có : `-7/4=(-7xx5)/(4xx5)=-35/20 ; -2/5=(-2xx4)/(5xx4)=-8/20;-3/10=(-3xx2)/(10xx2)=-6/20`

vậy 7/(-4) > -2/5 > -3/10`

 

6 tháng 2 2023

GIÚP MIK VỚI ĐG CẦN GẤP 

 

10 tháng 6 2020

Áp dụng tính chất (a - b)(a + b) = a2 + ab - ab - b2 = a2 - b2

Ta có : \(A=\frac{3}{\left(1.2\right)^2}+\frac{5}{\left(2.3\right)^2}+...+\frac{19}{\left(9.10\right)^2}\)

\(=\frac{1}{1.2}.\frac{3}{1.2}+\frac{1}{2.3}.\frac{5}{2.3}+...+\frac{1}{9.10}.\frac{19}{9.10}\)

\(=\left(1-\frac{1}{2}\right)\left(1+\frac{1}{2}\right)+\left(\frac{1}{2}-\frac{1}{3}\right)\left(\frac{1}{2}+\frac{1}{3}\right)+...+\left(\frac{1}{9}-\frac{1}{10}\right)\left(\frac{1}{9}+\frac{1}{10}\right)\)

\(=1^2-\left(\frac{1}{2}\right)^2+\left(\frac{1}{2}\right)^2-\left(\frac{1}{3}\right)^2+...+\left(\frac{1}{9}\right)^2-\left(\frac{1}{10}\right)^2=1^2-\left(\frac{1}{10}\right)^2=1-\frac{1}{100}=\frac{99}{100}< 1\)

29 tháng 10 2017

a/   3^21 > 2^31

b/   2017^10 +  2017^9  <2018^10

chọn mình nha . Mình cũng học lớp 6 đó (>-<)

28 tháng 8 2020

a>b vì ...

28 tháng 8 2020

Bài làm:

Ta có: \(A=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\frac{1}{5}-\frac{1}{6}+\frac{1}{7}-\frac{1}{8}+\frac{1}{9}-\frac{1}{10}\)

\(A=\left(1+\frac{1}{3}+...+\frac{1}{9}\right)-\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{10}\right)\)

\(A=\left[\left(1+\frac{1}{3}+...+\frac{1}{9}\right)+\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{10}\right)\right]-\left[\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{10}\right)+\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{10}\right)\right]\)

\(A=\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{10}\right)-2\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{10}\right)=B\)

Vậy A = B

11 tháng 4 2021

22222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222q22222222222222222222222222222222222222222222222222222222222222222222222222222222222222