Giúp mình bài 3 với
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2.
\(cosx+cos3x=1+\sqrt{2}sin\left(2x+\dfrac{\pi}{4}\right)\)
\(\Leftrightarrow2cos2x.cosx=1+cos2x+sin2x\)
\(\Leftrightarrow2cos2x.cosx=2cos^2x+2sinx.cosx\)
\(\Leftrightarrow cosx\left(cos2x-cosx-sinx\right)=0\)
\(\Leftrightarrow cosx\left(cos^2x-sin^2x-cosx-sinx\right)=0\)
\(\Leftrightarrow cosx\left(cosx+sinx\right)\left(cosx-sinx-1\right)=0\)
\(\Leftrightarrow cosx.\sqrt{2}sin\left(x+\dfrac{\pi}{4}\right).\left[\sqrt{2}cos\left(x+\dfrac{\pi}{4}\right)-1\right]=0\)
\(\Leftrightarrow\left[{}\begin{matrix}cosx=0\\sin\left(x+\dfrac{\pi}{4}\right)=0\\cos\left(x+\dfrac{\pi}{4}\right)=\dfrac{1}{\sqrt{2}}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{\pi}{2}+k\pi\\x=-\dfrac{\pi}{4}+k\pi\\x+\dfrac{\pi}{4}=\pm\dfrac{\pi}{4}+k2\pi\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{\pi}{2}+k\pi\\x=-\dfrac{\pi}{4}+k\pi\\x=k2\pi\end{matrix}\right.\)
1,Áp dụng định lý Pi-ta-go vào tam giác vuông AHB ta có:
\(AH^2+BH^2+AB^2\\
\Rightarrow x^2+4^2=\sqrt{52^2}\\
\Rightarrow x^2+16=52\\
\Rightarrow x^2=36\\
\Rightarrow x=6\left(vì.x>0\right)\)
Áp dụng định lý Pi-ta-go vào tam giác vuông AHC ta có:
\(AH^2+HC^2=AC^2\\ \Rightarrow6^2+9^2=y^2\\ \Rightarrow36+81=y^2\\ \Rightarrow117=y^2\\ \Rightarrow y=\sqrt{117}\left(vì.y>0\right)\)
2,Ta có BC=BH+HC=4+9=13
Ta có:\(AB^2+AC^2=\sqrt{52^2}+\sqrt{117^2}=52+117=169\)
\(BC^2=13^2=169\)
\(\Rightarrow AB^2+AC^2=BC^2\)
\(\Rightarrow\Delta ABC\) vuông tại A (định lý Pt-ta-go đảo)
a. Áp dụng định lý pitago vào tam giác vuông ABH
\(AB^2=AH^2+BH^2\)
\(\Rightarrow x=\sqrt{AB^2-BH^2}=\sqrt{\sqrt{52^2}-4^2}=\sqrt{52-16}=\sqrt{36}=6cm\)
Áp dụng định lý pitago vào tam giác vuông ACH
\(AC^2=AH^2+HC^2\)
\(\Rightarrow y=\sqrt{6^2+9^2}=\sqrt{117}=3\sqrt{13}\)
b. ta có: BC = 13 cm
AB = \(\sqrt{52}cm\)
\(AC=\sqrt{117}cm\)
Ta có: \(BC^2=AB^2+AC^2\)
\(13^2=\sqrt{52^2}+\sqrt{117^2}\)
\(169=169\) ( đúng )
Vậy tam giác ABC là tam giác vuông ( pitago đảo ) và vuông tại A
bài 3 A) 17:(34:100)=........%
B) số học sinh nữ là
35-17=18 bạn
tỉ số % là
18:17x100=..............%
Bài 5) số thứ 2 là
93,26-67,9=25,36
số thứ 1 là
67,9-25,36= 42,54
2b)
Áp dụng BĐT bunhiacopxki có:
\(\left(1+1\right)\left(x^4+y^4\right)\ge\left(x^2+y^2\right)^2\)
\(\left(1+1\right)\left(x^2+y^2\right)\ge\left(x+y\right)^2\)\(\Leftrightarrow x^2+y^2\ge\dfrac{\left(x+y\right)^2}{2}\)
\(\Rightarrow2\left(x^4+y^4\right)\ge\dfrac{\left(x+y\right)^4}{4}\Leftrightarrow x^4+y^4\ge\dfrac{1}{8}.\left(x+y\right)^4\)
Dấu "=" xảy ra khi x=y
3)
Áp dụng bđt Holder có:
\(\left(x^3+y^3+z^3\right)\left(1+1+1\right)\left(1+1+1\right)\ge\left(x+y+z\right)^3\)
\(\Leftrightarrow x^3+y^3+z^3\ge\dfrac{1}{9}\left(x+y+z\right)^3\)
Dấu "=" xảy ra khi x=y=z
3)(Nếu không dùng Holder)
Với x,y,z >0, ta có bđt sau:\(2x^3+2y^3+2z^3\ge xy\left(x+y\right)+yz\left(y+z\right)+xz\left(x+z\right)\) (1)
Thật vậy (1)\(\Leftrightarrow\left(x+y\right)\left(x^2-xy+y^2\right)-xy\left(x+y\right)+\left(y+z\right)\left(y^2-yz+z^2\right)-yz\left(y+z\right)+\left(z+x\right)\left(z^2-zx+x^2\right)-zx\left(x+z\right)\ge0\)
\(\Leftrightarrow\left(x+y\right)\left(x-y\right)^2+\left(y+z\right)\left(y-z\right)^2+\left(z+x\right)\left(z-x\right)^2\ge0\) (lđ)
Áp dụng AM-GM có:
\(x^3+y^3+z^3\ge3xyz\)
\(\Leftrightarrow\dfrac{2\left(x^3+y^3+z^3\right)}{3}\ge2xyz\) (2)
Từ (1) và (2), cộng vế với vế \(\Rightarrow\dfrac{8}{3}\left(x^3+y^3+z^3\right)\ge xy\left(x+y\right)+yz\left(x+z\right)+xz\left(x+z\right)+2xyz\)
\(\Leftrightarrow\dfrac{8}{3}\left(x^3+y^3+z^3\right)\ge\left(x+y\right)\left(y+z\right)\left(z+x\right)\)
\(\Leftrightarrow8\left(x^3+y^3+z^3\right)\ge3\left(x+y\right)\left(y+z\right)\left(x+z\right)\)
\(\Leftrightarrow9\left(x^3+y^3+z^3\right)\ge x^3+y^3+z^3+3\left(x+y\right)\left(y+z\right)\left(z+x\right)=\left(x+y+z\right)^3\)
\(\Rightarrow x^3+y^3+z^3\ge\dfrac{1}{9}\left(x+y+z\right)^3\) (đpcm)
\(3,\\ a,ĐK:x\ge-5\\ PT\Leftrightarrow2\sqrt{x+5}-2\sqrt{x+5}+3\sqrt{x+5}=12\\ \Leftrightarrow\sqrt{x+5}=4\Leftrightarrow x+5=16\Leftrightarrow x=11\left(tm\right)\\ b,ĐK:x\in R\\ PT\Leftrightarrow\left|x-5\right|=6\Leftrightarrow\left[{}\begin{matrix}x-5=6\\5-x=6\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=11\\x=-1\end{matrix}\right.\)
Bài 3:
a. \(\sqrt{9\left(x+3\right)}-\dfrac{1}{4}\sqrt{16\left(x+3\right)}+\sqrt{x+3}=6\)
\(\Leftrightarrow3\sqrt{x+3}-\sqrt{x+3}+\sqrt{x+3}=6\)
\(3\sqrt{x+3}=6\)
\(\sqrt{x+3}=2\)
\(\left\{{}\begin{matrix}2>0\left(ld\right)\\x+3=4\end{matrix}\right.\Leftrightarrow x=1\)
b. \(\sqrt{2x-1}=3\)
\(\left\{{}\begin{matrix}3>0\left(ld\right)\\2x-1=9\end{matrix}\right.\Leftrightarrow x=5\)
Bài 2:
\(a,B=\left[\dfrac{\sqrt{x}\left(\sqrt{x}+1\right)}{\sqrt{x}+1}+2\right]:\left[\dfrac{\sqrt{x}\left(\sqrt{x}-1\right)}{\sqrt{x}-1}-1\right]=\dfrac{\sqrt{x}+2}{\sqrt{x}-1}\\ b,B< 1\Leftrightarrow\dfrac{\sqrt{x}+2}{\sqrt{x}-1}-1< 0\\ \Leftrightarrow\dfrac{\sqrt{x}+2-\sqrt{x}+1}{\sqrt{x}-1}< 0\\ \Leftrightarrow\dfrac{3}{\sqrt{x}-1}< 0\Leftrightarrow\sqrt{x}-1< 0\Leftrightarrow\sqrt{x}< 1\\ \Leftrightarrow0\le x< 1\)
Bài 3:
\(a,ĐK:x\ge-3\\ PT\Leftrightarrow3\sqrt{x+3}-\sqrt{x+3}+\sqrt{x+3}=6\\ \Leftrightarrow3\sqrt{x+3}=6\\ \Leftrightarrow\sqrt{x+3}=2\\ \Leftrightarrow x+3=4\\ \Leftrightarrow x=1\left(tm\right)\\ b,ĐK:x\ge\dfrac{1}{2}\\ PT\Leftrightarrow\sqrt{2x-1}=3\Leftrightarrow2x-1=9\\ \Leftrightarrow x=5\left(tm\right)\)