Tìm a thuộc N để \(\frac{3a+2}{2a-1}\)có giá trị lớn nhất.Giá trị lớn nhất đó là bn
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt A=\(\frac{3a+2}{2a-1}\)
Để A có GTLN thì 2A có GTLN
Ta có: 2A=\(\frac{2.\left(3a+2\right)}{2a-1}\)\(=\frac{6a+4}{2a-1}\)\(=\frac{6a-3+7}{2a-1}\)\(=\frac{3.\left(2a-1\right)+7}{2a-1}=\frac{3.\left(2a-1\right)}{2a-}+\frac{7}{2a-1}=3+\frac{7}{2a-1}\)
Để 2A có GTLN thì\(\frac{7}{2-1}\)có GTLN => 2a-1 có GTNN
+) Với a=0 thì 2.a-1=2.0-1=-1. Lúc này:\(\frac{7}{2a-1}=\frac{7}{-1}=-7\)là số nguyên âm, ko đạt GTLN
+) Với a>0, a nhỏ nhất => a=1, thoả mãn \(\frac{7}{2a-1}\)có GTLN
\(\Rightarrow A=\frac{3.1+2}{2.1-1}=\frac{3+2}{2-1}=\frac{5}{1}=5\)
Vậy GTLN của \(\frac{3a+2}{2a-1}\)bằng 5 khi và chỉ khi a=1
mik cũng là ARMY nek bn
9
tk mình đi xin cậu đấy tk nha nha nha nha nha nha nha nha
tìm số tự nhiên y để biểu thức A=218-(2xy-8) có giá trị lớn nhất.giá trị lớn nhất của A là bao nhiêu
kh...................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................ông bít . mà này lớp năm học bài đấy rồi ak
Ta có: A = 2017 - 720 :(a- 6)
=> A có giá trị lớn nhất khi 720 : (a - 6) là bé nhất
=> 720 : ( a - 6) phải = 1
=> A = 2016
Ta có: A = 2017 - 720 :(a- 6)
=> A có giá trị lớn nhất khi 720 : (a - 6) là bé nhất
=> 720 : ( a - 6) phải = 1
=> A = 2016
a) \(a\ne0;a\ne1\)
\(\Leftrightarrow M=\left[\frac{\left(a-1\right)^2}{3a+\left(a-1\right)^2}-\frac{1-2a^2+4a}{a^3-1}+\frac{1}{a-1}\right]:\frac{a^3+4a}{4a^2}\)
\(=\left[\frac{\left(a-1\right)^2}{a^2+a+1}-\frac{1-2a^2+4a}{\left(a-1\right)\left(a^2+a+1\right)}+\frac{1}{a-1}\right]\cdot\frac{4a^2}{a\left(a^2+4\right)}\)
\(=\frac{\left(a-1\right)^3-1+2a^2-4a+a^2+a+1}{\left(a-1\right)\left(a^2+a+1\right)}\cdot\frac{4a}{a^2+4}\)
\(=\frac{a^3-1}{a^3-1}\cdot\frac{4a}{a^2+4}=\frac{4a}{a^2+4}\)
Vậy \(M=\frac{4a}{a^2+4}\left(a\ne0;a\ne1\right)\)
b) \(M=\frac{4a}{a^2+4}\left(a\ne0;a\ne1\right)\)
M>0 khi 4a>0 => a>0
Kết hợp với ĐKXĐ
Vậy M>0 khi a>0 và a\(\ne\)1
c) \(M=\frac{4a}{a^2+4}\left(a\ne0;a\ne1\right)\)
\(M=\frac{4a}{a^2+4}=\frac{\left(a^2+4\right)-\left(a^2-4a+4\right)}{a^2+4}=1-\frac{\left(a-2\right)^2}{a^2+4}\)
Vì \(\frac{\left(a-2\right)^2}{a^2+4}\ge0\forall a\)nên \(1-\frac{\left(a-2\right)^2}{a^2+4}\le1\forall a\)
Dấu "=" <=> \(\frac{\left(a-2\right)^2}{a^2+4}=0\)\(\Leftrightarrow a=2\)
Vậy \(Max_M=1\)khi a=2
a) vì \(\frac{2a-3}{4}\in N\)
Nên giá trị nhỏ nhất của phân số trên sẽ bằng 0
ta có: \(\frac{2a-3}{4}=0\)
\(\Rightarrow2a-3=0\)
\(\Rightarrow2a=3\)
\(\Rightarrow a=\frac{3}{2}\)
b) vì \(\frac{5}{3a-7}\in N\)
Nên giá trị nhỏ nhất của phân số trên sẽ bằng 0
ta có: \(\frac{5}{3a-7}=0\)
\(\Rightarrow3a-7=\frac{5}{0}\)(vô lí vì mẫu số luôn khác 0)
VẬY \(a=\varnothing\)