K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 11 2022

a: \(A=\dfrac{\sqrt{x}-1+\sqrt{x}}{\sqrt{x}\left(1-\sqrt{x}\right)}:\left(\dfrac{\left(\sqrt{x}+1\right)\left(2\sqrt{x}-1\right)}{\left(1+\sqrt{x}\right)\left(1-\sqrt{x}\right)}+\dfrac{\sqrt{x}\left(2x+\sqrt{x}-1\right)}{1+x\sqrt{x}}\right)\)

\(=\dfrac{2\sqrt{x}-1}{\sqrt{x}\left(1-\sqrt{x}\right)}:\left(2x+\sqrt{x}-1\right)\cdot\left(\dfrac{1}{1-x}+\dfrac{\sqrt{x}}{1+x\sqrt{x}}\right)\)

\(=\dfrac{2\sqrt{x}-1}{\sqrt{x}\left(1-\sqrt{x}\right)}:\left[\left(\sqrt{x}+1\right)\left(2\sqrt{x}-1\right)\cdot\dfrac{1+x\sqrt{x}+\sqrt{x}-x\sqrt{x}}{\left(1-x\right)\left(1+x\sqrt{x}\right)}\right]\)

\(=\dfrac{2\sqrt{x}-1}{\sqrt{x}\left(1-\sqrt{x}\right)}:\left[\dfrac{\left(2\sqrt{x}-1\right)\cdot\left(\sqrt{x}+1\right)}{\left(1-\sqrt{x}\right)\left(1+x\sqrt{x}\right)}\right]\)

\(=\dfrac{2\sqrt{x}-1}{\sqrt{x}\left(1-\sqrt{x}\right)}\cdot\dfrac{\left(1-\sqrt{x}\right)\left(x+\sqrt{x}+1\right)}{\left(2\sqrt{x}-1\right)}\)

\(=\dfrac{x+\sqrt{x}+1}{\sqrt{x}}\)

b: Khi x=17-12 căn 2 thì \(A=\dfrac{17-12\sqrt{2}+3-2\sqrt{2}+1}{3-2\sqrt{2}}=7\)

18 tháng 10 2023

1) \(A=\sqrt{x}\left(\sqrt{x}+1\right)-\left(\sqrt{x}-1\right)^2-2\)

\(A=\sqrt{x}\cdot\sqrt{x}+\sqrt{x}-\left(x-2\sqrt{x}+1\right)-2\)

\(A=x+\sqrt{x}-\left(x-2\sqrt{x}+1\right)-2\)

\(A=x+\sqrt{x}-x+2\sqrt{x}-1-2\)

\(A=3\sqrt{x}-3\)

Thay \(x=9\) vào A ta có:

\(A=3\cdot\sqrt{9}-3=3\cdot3-3=9-3=6\)

18 tháng 10 2023

giúp mik làm câu 2 với ah

ĐKXĐ: x>=0; x<>1

\(B=\dfrac{\left(\sqrt{x}+1\right)^2+\sqrt{x}\left(\sqrt{x}-1\right)+\sqrt{x}}{x-1}:\dfrac{\left(\sqrt{x}+1\right)^2-\left(\sqrt{x}-1\right)^2}{x-1}\)

\(=\dfrac{x+2\sqrt{x}+1+x-\sqrt{x}+\sqrt{x}}{x-1}\cdot\dfrac{x-1}{x+2\sqrt{x}+1-x+2\sqrt{x}-1}\)

\(=\dfrac{2x+2\sqrt{x}+1}{4\sqrt{x}}\)

Khi \(x=\dfrac{2-\sqrt{3}}{2}=\dfrac{4-2\sqrt{3}}{4}=\left(\dfrac{\sqrt{3}-1}{2}\right)^2\) thì:

\(B=\dfrac{2\cdot\dfrac{2-\sqrt{3}}{2}+2\cdot\dfrac{\sqrt{3}-1}{2}+1}{4\cdot\dfrac{\sqrt{3}-1}{2}}\)

\(=\dfrac{2-\sqrt{3}+\sqrt{3}-1+1}{2\left(\sqrt{3}-1\right)}=\dfrac{2}{2\left(\sqrt{3}-1\right)}=\dfrac{1}{\sqrt{3}-1}=\dfrac{\sqrt{3}+1}{2}\)

a) Ta có: \(A=\left(\dfrac{1}{x-\sqrt{x}}+\dfrac{1}{\sqrt{x}-1}\right):\dfrac{\sqrt{x}+1}{x-2\sqrt{x}+1}\)

\(=\left(\dfrac{1}{\sqrt{x}\left(\sqrt{x}-1\right)}+\dfrac{\sqrt{x}}{\sqrt{x}\left(\sqrt{x}-1\right)}\right):\dfrac{\sqrt{x}+1}{x-2\sqrt{x}+1}\)

\(=\dfrac{\sqrt{x}+1}{\sqrt{x}\left(\sqrt{x}-1\right)}\cdot\dfrac{\left(\sqrt{x}-1\right)^2}{\sqrt{x}+1}\)

\(=\dfrac{\sqrt{x}-1}{\sqrt{x}}\)

b) Ta có: \(B=\dfrac{2\sqrt{x}-1}{\sqrt{x}+1}+\dfrac{3\sqrt{x}-1}{x-\sqrt{x}+1}-\dfrac{2x\sqrt{x}-2x+2\sqrt{x}-3}{x\sqrt{x}+1}\)

\(=\dfrac{\left(2\sqrt{x}-1\right)\left(x-\sqrt{x}+1\right)}{\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}+\dfrac{\left(3\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}{\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}-\dfrac{2x\sqrt{x}-2x+2\sqrt{x}-3}{\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}\)

\(=\left(\dfrac{2x\sqrt{x}-3x+3\sqrt{x}-1+3x+2\sqrt{x}-1-2x\sqrt{x}+2x-2\sqrt{x}+3}{\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}\right)\)

\(=\dfrac{2x+3\sqrt{x}+1}{\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}\)

\(=\dfrac{2x+2\sqrt{x}+\sqrt{x}+1}{\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}\)

\(=\dfrac{\left(\sqrt{x}+1\right)\left(2\sqrt{x}+1\right)}{\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}\)

\(=\dfrac{2\sqrt{x}+1}{x-\sqrt{x}+1}\)

31 tháng 10 2021

a) ĐKXĐ: \(x>0,x\ne1\)

\(A=\dfrac{x+2+x-\sqrt{x}-x-\sqrt{x}-1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}.\dfrac{2\sqrt{x}}{\sqrt{x}-1}\)

\(=\dfrac{x-2\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}.\dfrac{2\sqrt{x}}{\sqrt{x}-1}\)

\(=\dfrac{\left(\sqrt{x}-1\right)^2}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}.\dfrac{2\sqrt{x}}{\sqrt{x}-1}=\dfrac{2\sqrt{x}}{x+\sqrt{x}+1}\)

7 tháng 5 2022

mik cần gấp ạ^^

 

18 tháng 11 2023

a: Khi x=25 thì \(A=\dfrac{5+1}{5-2}=\dfrac{6}{3}=2\)

b: \(B=\dfrac{\sqrt{x}}{\sqrt{x}+1}+\dfrac{1-\sqrt{x}}{\sqrt{x}-2}-\dfrac{\sqrt{x}+4}{x-\sqrt{x}-2}\)

\(=\dfrac{\sqrt{x}}{\sqrt{x}+1}+\dfrac{1-\sqrt{x}}{\sqrt{x}-2}-\dfrac{\sqrt{x}+4}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)}\)

\(=\dfrac{\sqrt{x}\left(\sqrt{x}-2\right)+\left(1-\sqrt{x}\right)\left(1+\sqrt{x}\right)-\sqrt{x}-4}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)}\)

\(=\dfrac{x-2\sqrt{x}+1-x-\sqrt{x}-4}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)}\)

\(=\dfrac{-3\sqrt{x}-3}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)}=-\dfrac{3}{\sqrt{x}-2}\)

c: P=B:A

\(=\dfrac{-3}{\sqrt{x}-2}:\dfrac{\sqrt{x}+1}{\sqrt{x}-2}=-\dfrac{3}{\sqrt{x}+1}\)

P<-1

=>P+1<0

=>\(\dfrac{-3+\sqrt{x}+1}{\sqrt{x}+1}< 0\)

=>\(\sqrt{x}-2< 0\)

=>\(\sqrt{x}< 2\)

=>0<=x<4

mà x nguyên

nên \(x\in\left\{0;1;2;3\right\}\)

1: \(=\left(1+\dfrac{\sqrt{x}}{\sqrt{x}-1}\right):\left(\dfrac{\sqrt{x}+3}{\sqrt{x}-2}+\dfrac{\sqrt{x}+2}{\sqrt{x}-3}+\dfrac{\sqrt{x}+2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\right)\)

\(=\dfrac{\sqrt{x}-1+\sqrt{x}}{\sqrt{x}-1}:\dfrac{x-9+x-4+\sqrt{x}+2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\)

\(=\dfrac{2\sqrt{x}-1}{\sqrt{x}-1}\cdot\dfrac{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}{2x+\sqrt{x}-11}\)

\(=\dfrac{\left(2\sqrt{x}-1\right)\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}{\left(\sqrt{x}-1\right)\left(2x+\sqrt{x}-11\right)}\)

2: \(=\dfrac{x-1-2\sqrt{x}+2}{\left(\sqrt{x}+1\right)\left(x-1\right)}:\dfrac{\sqrt{x}+1-2}{x-1}\)

\(=\dfrac{\left(\sqrt{x}-1\right)^2}{\left(x-1\right)\left(\sqrt{x}+1\right)}\cdot\dfrac{x-1}{\sqrt{x}-1}=\dfrac{\sqrt{x}-1}{\sqrt{x}+1}\)

17 tháng 6 2023

\(P=A.B=\dfrac{\sqrt{x}}{\sqrt{x}+1}.\dfrac{\sqrt{x}+1}{\sqrt{x}-2}\)

\(=\dfrac{\sqrt{x}}{\sqrt{x}-2}\)

Ta có : \(\left|P\right|-P=0\) \(\Leftrightarrow\left|P\right|=P\Leftrightarrow\left|\dfrac{\sqrt{x}}{\sqrt{x}-2}\right|=\dfrac{\sqrt{x}}{\sqrt{x}-2}\)

\(+TH_1:x\ge0\Leftrightarrow\dfrac{\sqrt{x}}{\sqrt{x}-2}=\dfrac{\sqrt{x}}{\sqrt{x}-2}\) (luôn đúng)

\(+TH_2:x< 0\Leftrightarrow-\dfrac{\sqrt{x}}{\sqrt{x}-2}=\dfrac{\sqrt{x}}{\sqrt{x}-2}\)

\(\Leftrightarrow-\dfrac{\sqrt{x}}{\sqrt{x}-2}-\dfrac{\sqrt{x}}{\sqrt{x}-2}=0\)

\(\Leftrightarrow-2.\left(\dfrac{\sqrt{x}}{\sqrt{x}-2}\right)=0\)

\(\Leftrightarrow x=0\)