chứng tỏ ( 6a + 5b ) chia hết cho 17 thì ( 5a + 7b ) cũng chia hết cho 17
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
5a+7b chia hết cho 17
=>6(5a+7b) chia hết cho 17
=>30a+42b chia hết cho 17
=>30a+42b-17b chia hết cho 17
=>30a+25b chia hết cho 17
=>5(6a+5b) chia hết cho 17
(5;17)=1 =>6a+5b chia hết cho 17
6a+5b chia hết cho 17
=>5(6a+5b) chia hết cho 17
=>30a+25b chia hết cho 17
=>30a+25b+17b chia hết cho 17
=>30a+42b chia hết cho 17
=>6(5a+7b) chia hết cho 17
=>5a+7b chia hết cho 17
=>đpcm
Có 2a+3b chia hết cho 17
=> 13.(2a+3b) chia hết cho 17 hay 26a+39b chia hết cho 17
Mà 17a và 34b đều chia hết cho 17
=> 26a+39b-17a-34b chia hết co 17 hay 9a+5b chia hết cho 17
=> ĐPCM
Điều ngược lại hoàn toàn đúng
k mk nha
Ta có:
2a + 3b = d
9a + 5b = c
=> 8a + 12b = 4d
9a + 5b = c
Ta có : 4d + c = (8a+9a ) +(12b+5b) = 17a + 17b = 17(a+b)
Vì d chia hết cho 17 => 4d chia hết cho 17 . Mà 4d + c chia hết 17 => c chia hết cho 17 hay 9a + 5b chia hết cho 17.
Điều ngược lại cũng đúng
a) a+4b chia hết cho 7 thì 5a+20b cũng chia hết cho 7
vậy (5a+20b)-(5a+3b) chia hết cho 7 nên 17b chia hết cho7
vì 17 không chia hết cho7 nên b phải chia hết cho 7
5a+3b chia hết cho 7 thì 20a+12b cũng chia hết cho 7
a+4b chia hết cho 7 thì 3a +12b cũng chia hết cho 7
vậy (20a+12b)-(3a+12b) chia hết cho7 nên 17a chia hết cho7
vì 17 không chia hết cho7 nên a phải chia hết cho 7
vì a chia hết cho7 và b chia hết cho 7 nên a+4b chia hết cho 7
b) tương tự như câu a
tích mình nhé Kim Chi !
a) Xét hiệu 2. (5a + 9b) - 5.(2a + b) = 10a + 18b - (10a + 5b) = (10a - 10a) + (18b - 5b) = 13b
Vì 5a + 9b chia hết cho 13 => 2(5a + 9b) chia hết cho 13
13b chia hết cho 13
=> 5.(2a + b) chia hết cho 13 (Áp dụng tính chất a ; b chia hết cho c thì a - c chia hết cho c)
mà (5; 13) = 1 nên 2a+ b chia hết cho 13
b) Xét hiệu 7.(6a + 7b) - 6(7a + 5b) = 42a + 49b - (42a + 30b) = (42a - 42a) + (49b - 30b) = 19b
=> 7.(6a + 7b) = 19b + 6(7a + 5b)
Vì 19b chia hết cho 19 và 6.(7a + 5b) chia hết cho 19 ( do 7a + 5b chia hết cho 19)
Nên 7.(6a + 7b) chia hết cho 19. ta có (7; 19) = 1 => 6a + 7b chia hết cho 19
*) Với bài tập này: Áp dụng tính chất x; y chia hết cho z thì x- y ; x + y chia hết cho z
Muốn vậy, ta nhân vào hai biểu thức đã cho số thích hợp nhằm khử a hoặc b (bài trên : khử đi a) để kết quả thu được là bội của số cần chứng minh chia hết
Quên thanks Trần Đức Thắng , mà làm câu Nếu 7a + 5b chia hết cho 19 thì 6a + 7b chia hết cho 19 luôn đi
\(Giải\)
Vì: 11 là số nguyên tố mà:(5a+6b)(6a+5b) chia hết cho 11
nên ít nhất 1 trong 2 số trên chia hết cho 11
+) 2 số chia hết cho 11 khi đó (5a+6b)(6a+5b) chia hết cho 121
+) 5a+6b chia hết cho 11
=> 11a+11b-5a-6b chia hết cho 11 <=> 6a+5b chia hết cho 11
=> (5a+6b)(6a+5b) chia hết cho 121
+) 6a+5b chia hết cho 11
=> 11a+11b-6a-5b chia hết cho 11
<=> 5a+6b chia hết cho 11
=> (5a+6b)(6a+5b) chia hết cho 11
Vậy: nếu (5a+6b)(6a+5b) chia hết cho 11 thì tích đó cũng chia hết cho 121 (đpcm)
\(9a+7b⋮17\Rightarrow3\left(9a+7b\right)=27a+21b⋮17\)
\(17a+17b⋮17\)
\(\Rightarrow27a+21b-17a-17b=10a+4b=2\left(5a+2b\right)⋮17\)
\(\Rightarrow5a+2b⋮17\)
9x+5y chia hết cho 17
=>17x-8x+17y-12y chia hết cho 17
=>17(x+y)-4(2x+3y) chia hết cho 17
=>2x+3y chia hết cho 17
6a+5b chia hết cho 17
=>5(6a+5b) chia hết cho 17
=>30a+25b chia hết cho 17
=>30a+25b+17b chia hết cho 17
=>30a+42b chia hết cho 17
=>6(5a+7b) chia hết cho 17
vì (6;17)=1 =>5a+7b chia hết cho 17
=>đpcm
6a+5b chia hết cho 17
=>5(6a+5b) chia hết cho 17
=>30a+25b chia hết cho 17
=>30a+25b+17b chia hết cho 17
=>30a+42b chia hết cho 17
=>6(5a+7b) chia hết cho 17
vì (6;17)=1 =>5a+7b chia hết cho 17
=>đpcm