K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 4 2021

P(1) = 1

=> a + b = 1 (1)

P(2) = 5

=> 2a + b = 5 (2)

Lấy (2) trừ (1) theo vế ta được

(2a + b) - (a + b) = 5 - 1

=> a = 4

=> b = - 3

Vậy P(x) = 4x - 3

21 tháng 4 2018

Ta có: P(1) = a . 1 + b = a + b = 1    (*)

           P(2) = a . 2 + b = 2a + b = 5   (**)

(**) - (*) <=> a = 4

                => b = -3

1 tháng 5 2017

Ta có:

+) P(1) = 1a+b =a+b=1 (1)

+) P(2) = 2a+b=5 (2)

Từ (1) và (2), ta có hệ phương trình: \(\hept{\begin{cases}a+b=1\\2a+b=5\end{cases}}\)

Giải hệ phương trình, ta có: a=4; b=-3

Vậy a=4; b=-3.

4 tháng 4 2018

Vì P(0) = 1 

=> P(0) = a.0 + b = 1

                   0 + b = 1

                  =>   b = 1 

Vì  P(2) =5 

=> a.2 +b = 5

Thay b =1 ta có 

    a.2 +1 = 5 

    a.2     = 5 -1 

     a. 2   = 4

     a       = 4 : 2 

     a       = 2 

Vậy (a ; b ) = ( 2 ; 1) 

11 tháng 7 2023

Theo đề có: \(P\left(-1\right)=-2\)

\(\Rightarrow\) Thế x = -1 vào đa thức P(x):

\(P\left(x\right)=P\left(-1\right)=a.\left(-1\right)+2=-2\)

\(\Leftrightarrow-a=-2-2=-4\\ \Leftrightarrow a=-\dfrac{4}{-1}=4\)

Vậy hệ số a của đa thức là a = 4.

21 tháng 4 2021

f(x) mà ko có x à bạn ?

Ta có: f(-1)=5

f(2)=-2

Do đó: \(\left\{{}\begin{matrix}-a+b=5\\2a+b=-2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-3a=7\\-a+b=5\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}a=\dfrac{-7}{3}\\b=5+\dfrac{-7}{3}=\dfrac{15}{3}-\dfrac{7}{3}=\dfrac{8}{3}\end{matrix}\right.\)

Vậy: \(a=-\dfrac{7}{3};b=\dfrac{8}{3}\)

27 tháng 8 2020

a) Ta có a.1/3 - 1/2 = 0

=> a.1/3 = 1/2

=> a = 3/2

Vậy a = 3/2

b) Ta có : f(1) = a.1 + b = a + b = -3

=> a + b = -3 (1)

Lại có f(2) = a.2 + b = 2 x a + b = 7

=> 2 x a + b = 7 (2)

Khi đó 2 x a + b - (a + b) = 7 - (-3)

=> 2 x a - a = 10

=> a = 10

=> b = -13

Vậy a = 10 ; b = -13

27 tháng 8 2020

a ) Ta có : \(a\cdot\frac{1}{3}-\frac{1}{2}=0\)

\(\Rightarrow a\cdot\frac{1}{3}=\frac{1}{2}\)

\(\Rightarrow a=\frac{3}{2}\)

Vậy \(a=\frac{3}{2}\)

b ) Ta có : \(f\left(1\right)=a\cdot1+b=a+b=-3\)

\(\Rightarrow a+b=-3\)(1)

Lại có : \(f\left(2\right)=a\cdot2+b=2\cdot a+b=7\)

\(\Rightarrow2\cdot a+b=7\)(2)

Khi đó : \(2\cdot a+b-\left(a+b\right)=7-\left(3\right)\)

\(\Rightarrow2\cdot a-a=10\)

\(\Rightarrow a=10;b=-13\)

Vậy ...

a: Bậc là 2

Hệ số cao nhất là -7

Hệ số tự do là 1

b: Thay x=2 vào A=0, ta được:

\(a\cdot2^2-3\cdot2-18=0\)

\(\Leftrightarrow4a=24\)

hay a=6

c: Ta có: C+B=A

nên C=A-B

\(=6x^2-3x-18-1-4x+7x^2\)

\(=13x^2-7x-19\)