\(49-y^2=12\cdot\left(x-2001\right)^2\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:\(49-y^2\le49\Rightarrow12\left(x-2001\right)^2\le49\)
\(\Rightarrow\left(x-2001\right)^2\le4\)
\(\Rightarrow\left(x-2001\right)^2\in\left\{0;1;4\right\}\)
\(\Rightarrow x-2001\in\left\{0;1;2\right\}\)
\(\Rightarrow x\in\left\{2001;2002;2003\right\}\)
a: \(=\dfrac{1}{x-y}\cdot x^2\cdot\left(x-y\right)=x^2\)
b: \(=\sqrt{27\cdot48}\cdot\left|a-2\right|=36\left(a-2\right)\)
c: \(=\left(\sqrt{2012}+\sqrt{2011}\right)^2\)
d: \(=\dfrac{8}{7}\cdot\dfrac{-x}{y+1}\)
e: \(=\dfrac{11}{12}\cdot\dfrac{x}{-y-2}=\dfrac{-11x}{12\left(y+2\right)}\)
MTC: (x+y)(x+1)(1-y)
\(=\frac{x^2\left(1+x\right)-y^2\left(1-y\right)-x^2y^2\left(x+y\right)}{\left(x+y\right)\left(1+x\right)\left(1-y\right)}=\frac{\left(x+y\right)\left(1+x\right)\left(1-y\right)\left(x-y+xy\right)}{\left(x+y\right)\left(1+x\right)\left(1-y\right)}\)
\(=x-y+xy\)
Với \(x\ne-1;x\ne-y;y\ne1\)thì giá trị biểu thức được xác định
a) Đặt \(x^2+3x+1=y\) khi đó ta có:
\(y\left(y-4\right)-5\)
\(=y^2-4y-5\)
\(=y\left(y-5\right)+\left(y-5\right)\)
\(=\left(y+1\right)\left(y-5\right)\)
Thay \(y=x^2+3x+1\):
\(\left(x^2+3x+1+1\right)\left(x^2+3x+1-5\right)\)
\(=\left(x^2+3x+2\right)\left(x^2+3x-4\right)\)
\(=\left[x\left(x+1\right)+2\left(x+1\right)\right]\left[x\left(x-1\right)+4\left(x-1\right)\right]\)
\(=\left(x+2\right)\left(x+1\right)\left(x-1\right)\left(x+4\right)\)
b) Biến đổi 3 số sau có chứa x2 + 2x rồi đặt ẩn.
c) \(\left(x+1\right)\left(x+3\right)\left(x+5\right)\left(x+7\right)+15\)
\(=\left[\left(x+1\right)\left(x+7\right)\right]\left[\left(x+3\right)\left(x+5\right)\right]+15\)
\(=\left(x^2+8x+7\right)\left(x^2+8x+15\right)+15\)
Đặt \(x^2+8x+7=y'\)
Khi đó ta đc:
\(y'\left(y'+8\right)+15\)
\(=\left(y'\right)^2+8y'+15\)
\(=y'\left(y'+3\right)+5\left(y'+3\right)\)
\(=\left(y'+5\right)\left(y'+3\right)\)
....
d) \(x^2-2xy+y^2-7x+7y+12\)
Biến đổi chứa x - y rồi đặt ẩn.
Đỗ thị như quỳnh: làm tương tự thôi mà, nếu bạn ko hiểu chỗ nào thì nói đi :)
\(49-y^2=12.\left(x^2-4002x+4004001\right)\)
\(\Leftrightarrow49-y^2=12x^2-48024x+48048012\)
\(\Leftrightarrow-y^2+12x^2+48024x=-49+48048012\)
Ý chết cha cái đề đâu rồi sao pit tính cái dj