Tìm n thuộc Z để A = n + 10 / 2n - 8 có giá trị nguyên .
K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Những câu hỏi liên quan
\(2A=\frac{2\left(n+10\right)}{2n-8}=\frac{2n+20}{2n-8}=\frac{2n-8+28}{2n-8}=1+\frac{28}{2n-8}\)
Để \(1+\frac{28}{2n-8}\) là số nguyên \(\frac{28}{2n-8}\) là số nguyên
=> 2n - 8 thuộc ước của 28
Ư(28) = { - 28; - 14; - 7; - 4; - 2; - 1; 1; 2; 4; 7; 14; 28 }
=> 2n - 8 = { - 28; - 14; - 7; - 4; - 2; - 1; 1; 2; 4; 7; 14; 28 }
=> n = { - 10; - 3; 2; 3; 5; 6; 11; 18 }
Vì A \(\in Z\)\(\Rightarrow\frac{n+10}{2n-8}\)\(\in Z\)
=> \(n+10⋮2n-8\)
=> \(2.\left(n+10\right)⋮2n-8\)
=> \(2n+20⋮2n-8\)
=> \(\left(2n-8\right)+28⋮2n-8\)
=> \(28⋮2n-8\)
=> \(2n-8\inƯ\left(28\right)=\left\{-28;-14;-7;-4;-2;-1;1;2;4;7;14;28\right\}\)
Vì \(2n-8\)là số nguyên chẵn
=> \(2n-8\in\left\{-28;-14;-4;-2;2;4;14;28\right\}\)
=> \(2n\in\left\{-20;-6;4;6;10;12;22;36\right\}\)
=> \(n\in\left\{-10;-3;2;3;5;6;11;18\right\}\)
Thử lại: với các giá trị của \(n\in\left\{-10;-3;2;3;5;6;11;18\right\}\)
Ta thấy: \(n\in\left\{-10;2;3;6;18\right\}\)( thỏa mãn )
Vậy: \(n\in\left\{-10;2;3;6;18\right\}\)thì A \(\in Z\)