Chứng minh rằng
1< 1/5 + 1/6 + ... 1/16 + 1/17 < 2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1/5+1/6+1/7+.....+1/17
=5+6+7+....+16+17/5x6x7x8x....x16x17<1
mà 1<2
nên 1/5+1/6+1/7+......+1/16+1/17<2
Đặt A = \(\frac{1}{5}+\frac{1}{6}+\frac{1}{7}+\frac{1}{8}+....+\frac{1}{17}+\frac{1}{18}+\frac{1}{19}\)
\(A=\left(\frac{1}{5}+\frac{1}{6}+...+\frac{1}{9}\right)+\left(\frac{1}{10}+\frac{1}{11}+...+\frac{1}{14}\right)+\left(\frac{1}{15}+\frac{1}{16}+...+\frac{1}{19}\right)\)
\(\Rightarrow A< \left(\frac{1}{5}+...+\frac{1}{5}\right)+\left(\frac{1}{10}+...+\frac{1}{10}\right)+\left(\frac{1}{15}+...+\frac{1}{15}\right)\)
\(\Rightarrow A< \frac{1}{5}\cdot5+\frac{1}{10}\cdot5+\frac{1}{15}\cdot5\)
\(\Rightarrow A< 1+\frac{1}{2}+\frac{1}{3}\)
\(\Rightarrow A< \frac{11}{6}< 2\)
\(\Rightarrow A< 2\left(đpcm\right)\)
Các phân số 1/201; 1/202;....;1/399 đều lớn hơn 1/400 nên 1/201+1/202+...+1/399+1/400>1/400 . 200 = 1/2
2.Có A=1/5+1/6+1/7+...+1/17
=(1/5+1/6+1/7+...+1/10)+(1/11+1/12+1/13+..+1/17)
Tới đây bạn tự tìm xem nó có bao nhiêu phân số
A<1/5.6+1/11.7=6/5+7/11=101/55=\(1\frac{46}{55}\)<2
VẬy A<2
1.Có A = tự viết ra
=(1/5+1/6+..+1/10)+(1/11+1/12+..+1/17)
Có bao nhiêu nhiêu ps tự tìm nhớ
A>1/10 .6+1/17 .7=Tự làm các bước =86/85>1
Vậy A>1
Ta có:
A = (1/2 + 1/3 + 1/4 + 1/5) + (1/6 + 1/7 + 1/8) + (1/9 + 1/10 + 1/11) +
(1/12 + 1/13 + 1/14) + (1/15 + 1/16 + 1/17) <
(1/2 + 1/3 + 1/4 + 1/5) + 3(1/6) + 3(1/9) + 3(1/12) + 3(1/15) =
2(1/2 + 1/3 + 1/4 + 1/5) < 2(1/2 + 1/2 + 1/4 + 1/4) = 3
Mặt khác
A = (1/2 + 1/3 + 1/4) + (1/5 + 1/6 + 1/7 + 1/8) + (1/9 + 1/10 + 1/11 + 1/12) +
(1/13 + 1/14 + 1/15 + 1/16) + 1/17 >
(1/2 + 1/3 + 1/4) + 4(1/8) + 4(1/12) + 4(1/16) =
2(1/2 + 1/3 + 1/4) > 2(1/2 + 1/4 + 1/4) = 2 => 2 < A < 3
Vậy A không là số tự nhiên