K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 2 2017

gọi biểu thức 2^4+2^8+....+2^2016 là A ta có

A=2^4+2^8+.....+2^2016

8A=2^4+2^8+.....+2^2010

8A-A=2-2^2010

7A=1+2-2^2010

22 tháng 2 2017

chưa hiểu

24 tháng 8 2018

Ta có  2 + 1 2017 = C 2017 0 .2 2017 + C 2017 1 .2 2016 + ... + C 2017 2017 .2 0

2 − 1 2017 = C 2017 0 .2 2017 + C 2017 1 .2 2016 . − 1 + ... + C 2017 2017 .2 0 . − 1 2017

Trừ từng vế hai đẳng thức trên ta được:

3 2017 − 1 = 2 C 2017 1 .2 2016 + C 2017 3 .2 2014 + ... + C 2017 2017 .2 0

Vậy  M = 3 2017 − 1 2

Chọn đáp án D.

30 tháng 9 2019

23 = 2.2.2 = 8;

24 = 2.2.2.2 = 16;

25 = 2.2.2.2.2 = 32;

26 = 2.2.2.2.2.2 = 64;

27 = 26.2 = 64.2 = 128;

28 = 27.2 = 128.2 = 256;

29 = 28 .2 = 256.2 = 512;

210 = 29.2 = 512.2 = 1024.

AH
Akai Haruma
Giáo viên
31 tháng 12 2023

1/

Tổng A là tổng các số hạng cách đều nhau 4 đơn vị.

Số số hạng: $(101-1):4+1=26$

$A=(101+1)\times 26:2=1326$

AH
Akai Haruma
Giáo viên
31 tháng 12 2023

2/

$B=(1+2+2^2)+(2^3+2^4+2^5)+(2^6+2^7+2^8)+(2^9+2^{10}+2^{11})$

$=(1+2+2^2)+2^3(1+2+2^2)+2^6(1+2+2^2)+2^9(1+2+2^2)$

$=(1+2+2^2)(1+2^3+2^6+2^9)$

$=7(1+2^3+2^6+2^9)\vdots 7$

17 tháng 3 2018

Ta có:

A = 2 + 22 + 23 + 24 + 25 + 26 + 27 + 28 + 29 + 210

= (2 + 22) + (23 + 24) + (25 + 26) + (27 + 28) + (29 + 210)

= 2 . (1 + 2) + 23 . (1 + 2) + 25 . (1 + 2) + 27 . (1 + 2) + 29 . (1 + 2)

= 2 . 3 + 23 . 3 + 25 . 3 + 27 . 3 + 29 . 3

= 3 . (2 + 23 + 25 + 27 + 29)

Vậy A ⋮ 3

30 tháng 9 2018

Giải cho bạn 2 bài tìm x nhé! Bài kia dễ,tự giải

a) \(3^{x+2}-3^x=8.243\Leftrightarrow3^x.3^2-3^x=1944\)

\(\Leftrightarrow3^x\left(3^2-1\right)=1944\Leftrightarrow3^x.8=1944\)

\(\Leftrightarrow3^x=243=3^5\Leftrightarrow x=5\)

b) \(1+2+3+...+x=210\)

\(\Leftrightarrow\frac{x\left(x+1\right)}{2}=210\Leftrightarrow x\left(x+1\right)=420\)

\(\Leftrightarrow20\left(20+1\right)=420\Rightarrow x=20\)

30 tháng 9 2018

thank ^ - ^

12 tháng 5 2022

Đặt N = 1 + 2 + 22 +...+ 22012

2N = 2 + 22 + 23 +...+ 22013

2N - N = (2 + 22 + 23+....+ 22013) - (1 + 2 + 22 +....+ 22012)

N = 22013 - 1

Thay N vào M ta được:

\(M=\dfrac{2^{2013}-1}{2^{2014}-2}=\dfrac{2^{2013}-1}{2\left(2^{2013}-1\right)}=\dfrac{1}{2}\)
12 tháng 5 2022

Đặt \(N=1+2+2^2+...+2^{2012}\)

\(2N=2+2^2+2^3+...+2^{2013}\)

\(2N-N=\left(2+2^2+2^3+...+2^{2013}\right)-\left(1+2+2^2+...+2^{2012}\right)\)

\(N=2^{2013}-1\)

Thay N vào M ta được:

\(M=\dfrac{2^{2013-1}}{2^{2014}-2}=\dfrac{2^{2013}-1}{2\left(2^{2013}-1\right)}=\dfrac{1}{2}\)

25 tháng 8 2021

trên đầu bài là giấu phẩy hay giấu nhân thế

 

25 tháng 8 2021

\(a,2^2=4,2^3=8,2^4=16,2^5=32,2^6=64,2^7=128,2^8=256,2^9=512,2^{10}=1024\)

\(b,3^2=9,3^3=27,3^4=81,3^5=243\)

\(c,4^2=16,4^3=64,4^4=256\)

\(d,5^2=25,5^3=125,5^4=625\)

 

1) \(\left(x+1\right)^2=x^2+2x+1\)

2) \(\left(2x+1\right)^2=4x^2+4x+1\)

3) \(\left(2x+y\right)^2=4x^2+4xy+y^2\)

4) \(\left(2x+3\right)^2=4x^2+12x+9\)

5) \(\left(3x+2y\right)^2=9x^2+12xy+4y^2\)

6) \(\left(2x^2+1\right)^2=4x^4+4x^2+1\)

7) \(\left(x^3+1\right)^2=x^6+2x^3+1\)

8) \(\left(x^2+y^3\right)^2=x^4+2x^2y^3+y^6\)

9) \(\left(x^2+2y^2\right)^2=x^4+4x^2y^2+4y^4\)

10) \(\left(\dfrac{1}{2}x+\dfrac{1}{3}y\right)^2=\dfrac{1}{4}x^2+\dfrac{1}{3}xy+\dfrac{1}{9}y^2\)