Cho B = 5n+11 / 3n+2
a) tìm n thuộc Z để b có giá trị nguyên
b) Tìm n e N , tìm MaxB
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Để A có giá trị nguyên thì \(n-5⋮n+1\)
\(\Leftrightarrow n+1-6⋮n+1\)
mà \(n+1⋮n+1\)
nên \(-6⋮n+1\)
\(\Leftrightarrow n+1\inƯ\left(-6\right)\)
\(\Leftrightarrow n+1\in\left\{1;-1;2;-2;3;-3;6;-6\right\}\)
hay \(n\in\left\{0;-2;1;-3;2;-4;5;-7\right\}\)
Vậy: \(n\in\left\{0;-2;1;-3;2;-4;5;-7\right\}\)
b)
Ta có: \(A=\dfrac{n-5}{n+1}\)
\(=\dfrac{n+1-6}{n+1}\)
\(=1-\dfrac{6}{n+1}\)
Để A là phân số tối giản thì ƯCLN(n-5;n+1)=1
\(\LeftrightarrowƯCLN\left(6;n+1\right)=1\)
\(\Leftrightarrow n+1⋮̸6\)
\(\Leftrightarrow n+1\ne6k\left(k\in N\right)\)
\(\Leftrightarrow n\ne6k-1\left(k\in N\right)\)
Vậy: Khi \(n\ne6k-1\left(k\in N\right)\) thì A là phân số tối giản
\(A = {6n-1\over 3n+2} \),A là số nguyên nên 6n-1 phải chia hết cho 3n+2. Suy ra 3n+2 là ước của 6n-1 = \({\pm 1 , \pm (6n-1)}\)
.với 3n+2 =1 => n=\(x = {-1\ \ \over 3}\) (loại)
.Với 3n+2= -1=> n= -1 => A= 7 ( thỏa mãn )
.với 3n +2 =6n-1 => n = 1 => A = 1 (Thỏa mãn )
.với 3n+2 =1-6n => n=\(x = {-1 \ \over 9}\) (loại )
Kết luận vậy n = { -1,1 }
a. A có giá trị là số nguyên <=> n+5 chia hết cho n+9
<=>(n+9)-4 chia hết cho n+9
<=> 4 chia hết cho n+9 (vì n+9 chia hết cho n+9 )
<=> n+9 là ước của 4
=> n+9 = 1,-1 , 2 ,-2,4,-4
sau đó bn tự tìm n ha
b, B là số nguyên <=>3n-5 chia hết cho 3n-8
<=>(3n-8)+5 chia hết cho 3n-8
<=> 5 chia hết cho 3n-8
<=> 3n-8 là ước của 5
=> 3n-8 =1,-1,5,-5
tiếp bn lm ha
c, D là số nguyên <=> 5n+1 chia hết cho 5n+4
<=> (5n+4)-3 chia hết cho 5n+4
<=> 3 chia hết cho 5n +4
<=> 5n +4 là ước của 3
=> 5n+4 =1, -1,3,-3
tiếp theo bn vẫn tự lm ha
đoạn tiếp theo ở cả 3 câu , bn tìm n theo từng trường hợp rồi xem xem giá trị n nào thỏa mãn n là số nguyên là OK . chúc bn học giỏi