K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 2 2017

có vô số cặp

làm 1 vài phép biến đổi có thể suy ra 15a+10b=6a+6b

<=> 11a+4b=0 <=> a=\(\frac{-4b}{11}\) => -4b thuộc bội của (11)={0;±11;±22;±33,....}

hay b thuộc bội của (44)={0;±44;±88;±132;...}

Mỗi giá trị của b lại có 1 giá trị cua a mà B(44) có vô số số hạng nên có vô số cặp số (a;b) tự nhiên.

5 tháng 3 2017

0 nha ban

1 tháng 2 2019

1/a - b/6 = 1/3
<=> (6 - ab)/6a = 1/3
<=> 18 - 3ab = 6a
<=> 6a + 3ab = 18
<=> 2a + ab = 6
<=> a(2 + b) = 1 . 6 = 6 . 1 = 2 . 3 = 3 . 2
TH1 a = 1 và 2 + b = 6
<=> a = 1 (thỏa) và b = 4 (thỏa)
TH2 a = 6 và 2 + b = 1
<=> a = 6 (thỏa) và b = -1 (loại)
TH3 a = 2 và b + 2 = 3
<=> a = 2 (thỏa) và b = 1 (thỏa)
TH4 a = 3 và b + 2 = 2
<=> a = 3 (thỏa) và b = 0 (thỏa)
Vậy (a ; b) = {(1 ; 4) ; (2 ; 1) ; (3 ; 0)}

1 tháng 2 2019

Ta có : \(\frac{1}{a}-\frac{b}{6}=\frac{1}{3}\)

\(\frac{1}{a}-\frac{b}{6}=\frac{2}{6}\)

\(\frac{1}{a}=\frac{b+2}{6}\)

a . ( b + 2 ) = 1 . 6

a . ( b + 2 ) = 6

Ta có bẳng sau :

a-6-3-2-11236
b+2-1-2-3-66321
b-3-4-5-8410-1

Vậy các cặp giá trị a,b thỏa mãn là : { -6;-3 } ; { -3 ; -4 } ; { -2 ; -5 } ; { -1 ; -8 } ; { 1 ; 4 } ; { 2 ; 1 } ; { 3 ; 0 } ; { 6 ; 1 }

3 tháng 8 2017

ban len mang di , nam nay mk moi len lop 6 

chuc ban hoc tot ^-^

3 tháng 8 2017

hình như sai đề thì phải. Phần A đó, cuối cùng phải là 47.49 chứ

5 tháng 12 2017

Ta có:\(3^a=9^{b-1}=3^{2b-2}\Rightarrow a=2b-2\)

\(2^{a+8}=8^b=2^{3b}\Rightarrow a+8=3b\Rightarrow a=3b-8\)

\(\Rightarrow\left(3b-8\right)-\left(2b-2\right)=b-6=0\Rightarrow b=6\)

\(\Rightarrow a=2b-2=2.6-2=10\)

19 tháng 3 2017

Theo đề bài

\(\Rightarrow\left\{{}\begin{matrix}2008a+3b+1\\2018^a+2018a+b\end{matrix}\right.\) là hai số lẻ

Nếu \(a\ne0\Rightarrow2008^a+2018a\) là số chẵn

Để \(2008^a+2008a+b\) lẻ \(\Rightarrow b\) lẻ

Nếu \(b\) lẻ \(\Rightarrow3b+1\) chẵn

Do đó \(2008a+3b+1\) chẵn (không thỏa mãn)

\(\Rightarrow a=0\)

Với \(a=0\Rightarrow\left(3b+1\right)\left(b+1\right)=225\)

\(b\in N\Rightarrow\left(3b+1\right)\left(b+1\right)=3.75=5.45=9.25\)

Do \(3b+1\) \(⋮̸\) \(3\)\(3b+1>b+1\)

\(\Rightarrow\left\{{}\begin{matrix}3b+1=25\\b+1=9\end{matrix}\right.\)\(\Rightarrow b=8\)

Vậy: \(\left\{{}\begin{matrix}a=0\\b=8\end{matrix}\right.\)

19 tháng 3 2017

1