Cho \(\frac{m}{n}\)là phân số tối giản CMR \(\frac{m}{m+n}\)cũng là phân số tối giản
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
Gọi $d=ƯCLN(m, m+n)$
$\Rightarrow m\vdots d; m+n\vdots d$
$\Rightarrow (m+n)-m\vdots d$
$\Rightarrow n\vdots d$
Vậy $d=ƯC(m,n)$
Mà $m,n$ là hai số nguyên tố cùng nhau nên $d=1$
$\Rightarrow ƯCLN(m,m+n)=1\Rightarrow \frac{m}{m+n}$ là phân số tối giản.
Giả sử (m + n)/n không là phân số tối giản. Đặt Ư CLN(m + n;n) = d (d ≠ 1). Khi đó (m + n) ⋮ d, n ⋮ d => (a + b) - b ⋮ d => a ⋮ d mà n ⋮ d => m/n không tối giản (vô lý) => với mọi d khác 1 m/n không tối giản => d = 1 => (m + n)/n cũng là phân số tối giản. Vậy ta có đpcm.
\(\frac{m}{n}\)tối giản
=> m và n là số nguyên tố . (1)
để \(\frac{m}{n+mn}\)là số nguyên tố thì m và n+mn cũng là số nguyên tố
Ta có : • Từ (1) chứng tỏ m là số nguyên tố
• Từ (1) chứng tỏ m.n là số nguyên tố vì m và n đều là số nguyên tố (2)
Từ (1) và (2) ta có:
m và n+mn là số nguyên tố
=> \(\frac{m}{n+mn}\)là phân số tối giản
Đặt \(A=\frac{m}{n}+\frac{n}{n}\)
Hay \(A=\frac{m+n}{n}\)
Mà \(m\) không chia hết cho \(n\)(vì \(\frac{m}{n}\)là Ps tối giản
\(n\)chia hết cho \(n\)
=> \(m+n\)không chia hết cho \(n\)
Vậy Ps \(\frac{m}{n}+\frac{n}{n}\)là Ps tối giản
Mk giải theo cách mk hiểu chứ ko phải chặt chẽ lắm đâu nha !!!
Với \(k\inℕ\)thì \(k\)có thể bằng \(0\)
\(\Rightarrow kn\)có thể bằng \(0\)
\(\Rightarrow\frac{m}{kn+m}=\frac{m}{0+m}=\frac{m}{m}=1\)
\(\Rightarrow\frac{m}{kn+m}\)ko phải phân số tối giản
Vậy để \(\frac{m}{kn+m}\)là phân số tối giản thì \(k\inℕ^∗\)
Chắc vậy !!!
HD
phản chứng
g/s a/(a+b) không tối giản => ước chung (d) của nó khác 1
hãy c/m d <=1 => dpcm
Vì \(\frac{m}{n}\)là phân số tối giản nên ƯCLN(m,n)=1
Gọi ƯCLN(m+n;n)=d
Ta có:
m+n chia hết cho d
n chia hết cho d
Vì m và n nguyên tố cùng nhau nên m không chia hết cho n
Suy ra m+n và n là 2 số nguyên tố cùng nhau
Vậy \(\frac{m+n}{2}\) là phân số tối giản
Vì m;n là phân số tối giản => (m;n)=1 (1)
Giả sử (m;m+n) = d khác 1 => m chia hết cho d và m+n chia hết cho d
=> (m+n) - m chia hết cho d hay n chia hết cho d
do đó (m;n) = d khác 1 trái với (1) => vô lý
Vậy (m;m+n) = 1 hay phân số m/(m+n) là phân số tối giản