K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 9 2018

bạn lm bài này ch. gửi cho mk cách lm vs

23 tháng 9 2018

bài này mk làm 2 năm rồi

28 tháng 1 2022

a) △ABC cân ⇒ \(\widehat{ABC}=\widehat{ACB}\) ⇒\(\widehat{ABM}=\widehat{ACN}\) 

Xét △ABM và △ACN có:

\(AB=AC\) ( Vì △ABC cân)

\(\widehat{ABM}=\widehat{ACN}\left(cmt\right)\)

BM=CN(gt)

Do đó : △ABC=△ACN\(\left(c.g.c\right)\)

b)Xét △vuoongAHB và △vuoongAKC có

AB=AC(vì △ABC cân)

\(\widehat{HAB}=\widehat{KAC}\) (vì △ABM=△ACN)

⇒△AHB=△AKC ( cạnh huyền góc nhọn)

⇒AH=AK

 

 

28 tháng 1 2022

a, Ta có : ^ABM = ^MBC - ^ABC (1) 

^ACN = ^NCB - ^ACB (2) 

Từ (1) ; (2) suy ra ^ABM = ^ACN 

Xét tam giác ABM và tam giác ANC có : 

^ABM = ^ANC ( cmt ) 

AB = AC ( gt )

MB = NC (gt)

Vậy tam giác ABM = tam  giác ACN ( c.g.c )

=> AM = AN ( 2 cạnh tương ứng )

Xét tam giác AMN có : AN = AM 

Vậy tam giác AMN là tam giác cân tại A 

=> ^M = ^N (3) 

b, Ta có : ^AMB = ^ABH ( cùng phụ ^HBM ) (4) 

^ACK = ^ANC ( cùng phụ ^KCN ) (5) 

Từ (3) ; (4) ; (5) suy ra : ^ABH = ^ACK 

=> ^HBM = ^KCN 

Xét tam giác AHB và tam giác AKC ta có : 

^ABH = ^ACK ( cmt )

AB = AC 

^AHB = ^AKC = 900

Vậy tam giác AHB = tam giác AKC ( ch - gn )

=> AH = AK ( 2 cạnh tương ứng )

c, Ta có : ^HBM = ^OBC ( đối đỉnh ) 

^KCN = ^BCO ( đối đỉnh ) 

mà ^HBM = ^KCN (cmt) 

Xét tam giác OBC có : 

^OBC = ^OCB vậy tam giác OBC cân tại O

 

12 tháng 5 2022

Giúo tui với

 

DD
12 tháng 5 2022

a) Xét tam giác \(ABM\) và tam giác \(NDM\):

\(\widehat{BAM}=\widehat{DNM}\left(=90^o\right)\)

\(MB=MD\)

\(\widehat{AMB}=\widehat{NMD}\)

Suy ra \(\Delta ABM=\Delta NDM\) (cạnh huyền - góc nhọn) 

b) \(\Delta ABM=\Delta NDM\) suy ra \(\widehat{ABM}=\widehat{NDM}\)

mà \(\widehat{ABM}=\widehat{EBM}\). 

suy ra \(\widehat{NDM}=\widehat{EBM}\) suy ra tam giác \(EBD\) cân tại \(E\)

suy ra \(BE=DE\). 

 

a: Xét ΔABM và ΔACN có

AB=AC

\(\widehat{ABM}=\widehat{ACN}\)

BM=CN

Do đó:ΔABM=ΔACN

b: Xét ΔHMB vuông tại H và ΔKNC vuông tại K có

MB=NC

\(\widehat{M}=\widehat{N}\)

Do đó: ΔHMB=ΔKNC

Suy ra: BH=CK

c: Xét ΔABH vuông tại H và ΔACK vuông tại K có

AB=AC

BH=CK

Do đó:ΔABH=ΔACK

Suy ra:  AH=AK

Xét ΔAMN có AH/AM=AK/AN

nên HK//MN

hay HK//BC

d: Ta có: ΔHBM=ΔKCN

nên \(\widehat{HBM}=\widehat{KCN}\)

=>\(\widehat{OBC}=\widehat{OCB}\)

hay ΔOBC cân tại O

24 tháng 2 2022

Cám ơn nhiều ạ!

a: Xét ΔMAC có 

MI là đường cao

MI là đường trung tuyến

Do đó: ΔMAC cân tại M

=>\(\widehat{AMC}=180^0-2\cdot\widehat{ACM}=180^0-2\cdot\widehat{ACB}\left(1\right)\)

ΔABC cân tại A

=>\(\widehat{BAC}=180^0-2\cdot\widehat{ACB}\left(2\right)\)

Từ (1) và (2) suy ra \(\widehat{AMC}=\widehat{BAC}\)

b:

ΔABC cân tại A

=>\(\widehat{ABC}=\widehat{ACB}\)

ΔMAC cân tại M

=>\(\widehat{MAC}=\widehat{MCA}=\widehat{ACB}\)

 \(\widehat{ABM}+\widehat{ABC}=180^0\)(hai góc kề bù)

=>\(\widehat{ABM}=180^0-\widehat{ABC}=180^0-\widehat{ACB}\left(3\right)\)

\(\widehat{CAN}+\widehat{CAM}=180^0\)(hai góc kề bù)

=>\(\widehat{CAN}+\widehat{ACB}=180^0\)

=>\(\widehat{CAN}=180^0-\widehat{ACB}\left(4\right)\)

Từ (3) và (4) suy ra \(\widehat{ABM}=\widehat{CAN}\)

Xét ΔABM và ΔCAN có

AB=CA

\(\widehat{ABM}=\widehat{CAN}\)

BM=AN

Do đó;ΔABM=ΔCAN

c: ΔABM=ΔCAN

=>NC=MA

mà MA=MC

nên NC=MC

\(\widehat{AMC}=\widehat{BAC}\)

mà \(\widehat{BAC}=45^0\)

nên \(\widehat{AMC}=45^0\)

Xét ΔCMN có CM=CN và \(\widehat{CMN}=45^0\)

nên ΔCMN vuông cân tại C