Tìm a,b,c bt: a.b=3/5 và b.c=4/5 và c.a=3/4
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Từ bài toán, ta có:
\(\dfrac{a}{3}=\dfrac{b}{4}=\dfrac{c}{5}\) và \(a+b+c=24\)
Áp dụng tính chất dãy tỉ số bằng nhau, ta có:
\(\dfrac{a}{3}=\dfrac{b}{4}=\dfrac{c}{5}=\dfrac{a+b+c}{3+4+5}=\dfrac{24}{12}=2\)
Suy ra:
\(a=2\cdot3=6\)
\(b=2\cdot4=8\)
\(c=3\cdot5=15\)
a/ \(\left\{{}\begin{matrix}a+b=5\\b+c=-10\\a+c=-3\end{matrix}\right.\)
=> \(\left\{{}\begin{matrix}a+b=5\\b+c=-10\\2\left(a+b+c\right)=-8\end{matrix}\right.\)
=> \(\left\{{}\begin{matrix}a+b=5\\b+c=-10\\\left(a+b+c\right)=-4\end{matrix}\right.\)
=> \(\left\{{}\begin{matrix}c=-9\\a=6\\b=-1\end{matrix}\right.\) (TM)
b/ \(\left\{{}\begin{matrix}ab=-2\\bc=-6\\ac=3\end{matrix}\right.\)
\(\Rightarrow a^2b^2c^2=36\)
=> \(\left[{}\begin{matrix}abc=6\\abc=-6\end{matrix}\right.\)
TH1 : abc = - 6
Mà \(\left\{{}\begin{matrix}ab=-2\\bc=-6\\ac=3\end{matrix}\right.\)
=> \(\left\{{}\begin{matrix}c=3\\a=1\\b=-2\end{matrix}\right.\) (TM)
TH2 : abc = 6
Mà \(\left\{{}\begin{matrix}ab=-2\\bc=-6\\ac=3\end{matrix}\right.\)
=> \(\left\{{}\begin{matrix}c=-3\\a=-1\\b=2\end{matrix}\right.\) (TM)
Theo đề bài, ta có;
a^2 * b^2 * c^2 = 3/5 * 4/5 * 3/4
abc^2 = 9/25
abc = 3/5
(đến đây tự tìm a,b,c nha bạn)
ab = 3/5 (1)
bc = 4/5 (2)
ca = 3/4 (3)
lấy (1)*(2)*(3): a²b²c² = (3/5)(4/5)(3/4) = 9/25 => abc = ±3/5
*abc = -3/5 (4)
lần lượt lấy (4) chia cho (1), (2), (3) ta có:
c = -1; a = -3/4; b = -4/5
*abc = 3/5 (5)
lấy (5) chia cho (1), (2), (3)
c = 1, a = 3/4, b = 4/5
Nếu thấy đúng thì tích nha
ab = 3/5 (1)
bc = 4/5 (2)
ca = 3/4 (3)
lấy (1)*(2)*(3): a²b²c² = (3/5)(4/5)(3/4) = 9/25 => abc = ±3/5
*abc = -3/5 (4)
lần lượt lấy (4) chia cho (1), (2), (3) ta có:
c = -1; a = -3/4; b = -4/5
*abc = 3/5 (5)
lấy (5) chia cho (1), (2), (3)
c = 1, a = 3/4, b = 4/5
\(a\times b=\frac{3}{5}\)
\(b\times c=\frac{4}{5}\)
\(c\times a=\frac{3}{4}\)
\(a\times b\times b\times c\times c\times a=\frac{3}{4}\times\frac{3}{5}\times\frac{4}{5}\)
\(a^2\times b^2\times c^2=\frac{9}{25}\)
\(\left(a\times b\times c\right)^2=\left(\pm\frac{3}{5}\right)^2\)
\(a\times b\times c=\pm\frac{3}{5}\)
TH1:
\(a\times b\times c=\frac{3}{5}\)
TH2:
\(a\times b\times c=-\frac{3}{5}\)
Vậy ........
Đến đây bn tự tính theo từng trường hợp nhé ^^
a) gt => a + b+ c = 4. kết hợp với a+b =5
=> c = -1
a + b + c = 4 kết hợp với b+c = 9 => a = -4
=> b= 10
b) a.b = -6 (1)
b.c= -15 (2)
c.a = 10 (3)
Từ (1) => a = -6/b. Thay a vào (3) được: c = -5/ 3b
Thay c vào (2) được b2 = 9 => b= 3 hoặc b = -3
+) với b = 3 => c = -5 ; a = -2
+) với b= -3 => c = 5 ; a= 2
=>> KL: ...
a) a + b = 5 ; b + c = -10 ; c + a = -3
=> a + b + b + c + c + a = 5 -10 -3
=> 2a + 2b + 2c = -8
=> 2 . ( a + b + c ) = -8
=> a + b + c = -4
=> 5 + c = -4
=> c = -9
Khi c = -9 thì x = 6 , b = -1
Vậy : a = 6 , b = -1 , c = -9