K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 7 2016

ab = 3/5 (1) 
bc = 4/5 (2) 
ca = 3/4 (3) 
lấy (1)*(2)*(3): a²b²c² = (3/5)(4/5)(3/4) = 9/25 => abc = ±3/5 
*abc = -3/5 (4) 
lần lượt lấy (4) chia cho (1), (2), (3) ta có: 
c = -1; a = -3/4; b = -4/5 
*abc = 3/5 (5) 
lấy (5) chia cho (1), (2), (3) 
c = 1, a = 3/4, b = 4/5 

20 tháng 7 2016

\(a\times b=\frac{3}{5}\)

\(b\times c=\frac{4}{5}\)

\(c\times a=\frac{3}{4}\)

\(a\times b\times b\times c\times c\times a=\frac{3}{4}\times\frac{3}{5}\times\frac{4}{5}\)

\(a^2\times b^2\times c^2=\frac{9}{25}\)

\(\left(a\times b\times c\right)^2=\left(\pm\frac{3}{5}\right)^2\)

\(a\times b\times c=\pm\frac{3}{5}\)

TH1:

\(a\times b\times c=\frac{3}{5}\) 

TH2:

\(a\times b\times c=-\frac{3}{5}\)

Vậy ........

Đến đây bn tự tính theo từng trường hợp nhé ^^

1 tháng 3 2018

Tôi là anh bạn! Bạn là em tôi!

1 tháng 3 2018

Hố hố hố! Ngu v thật

7 tháng 8 2016

\(A=\frac{1}{ab+a+1}+\frac{1}{bc+b+1}+\frac{1}{ca+c+1}\)\(=\frac{1}{ab+a+1}+\frac{a}{a\left(bc+b+1\right)}+\frac{abc}{ca+c+abc}\)

\(=\frac{1}{ab+a+1}+\frac{a}{1+ab+a}+\frac{ab}{a+1+ab}=1\)

21 tháng 9 2020

Theo bài ra ta có: a.b.c = 1

    =>  a=1;b=1;c=1

Ta có: A = \(\frac{1}{a.b+a+1}\)\(+\frac{1}{b.c+b+1}+\frac{1}{c.a+c+1}\)\(=\frac{1}{1.1+1+1}+\frac{1}{1.1+1+1}\)\(+\frac{1}{1.1+1+1}\)

             \(=\frac{1}{1+1+1}+\frac{1}{1+1+1}+\frac{1}{1+1+1}\)\(=\frac{1}{3}+\frac{1}{3}+\frac{1}{3}=\frac{3}{3}=1\)

Vậy A = 1

6 tháng 8 2016

\(A=\)\(\frac{1}{ab+a+1}+\frac{1}{bc+b+1}+\frac{1}{ca+c+1}\)

    \(=\frac{c}{\left(ab+a+1\right)c}+\frac{ac}{\left(bc+b+1\right).ac}+\frac{1}{ca+c+1}\)

    \(=\frac{c}{abc+ac+c}+\frac{ac}{abc^2+abc+ac}+\frac{1}{ca+c+1}\)

    \(=\frac{c}{1+ac+c}+\frac{ac}{c+1+ac}+\frac{1}{ca+c+1}\)

    \(=\frac{c+ac+1}{1+ac+c}=1\)

  

25 tháng 2 2017

\(\frac{a}{3}+\frac{b}{4}=\frac{a+b}{3+4}\Leftrightarrow\frac{4a+3b}{12}=\frac{a+b}{7}\Leftrightarrow28a+21b=12a+12b\)

\(\Leftrightarrow\left(16a+9b\right)+\left(12a+12b\right)=12a+12b\)

\(\Leftrightarrow16a+9b=0\)

Vì \(16a\ge0;9b\ge0\) ( vì a;b là số TN )

=> \(16a+9b\ge0\)

Dấu "=" xảy ra <=> a = b = 0

b) \(\frac{52}{9}=5+\frac{7}{9}=5+\frac{1}{\frac{9}{7}}=5+\frac{1}{1+\frac{2}{7}}=5+\frac{1}{1+\frac{1}{\frac{7}{2}}}=5+\frac{1}{1+\frac{1}{3+\frac{1}{2}}}\)

\(\Rightarrow a=1;b=3;c=2\)

a) a + b = 5 ; b + c = -10 ; c + a = -3

=> a + b + b + c + c + a = 5 -10 -3

=> 2a + 2b + 2c = -8

=> 2 . ( a + b + c ) = -8

=> a + b + c = -4

=> 5 + c = -4

=> c = -9

Khi c = -9 thì x = 6 , b = -1

Vậy : a = 6 , b = -1 , c = -9

AH
Akai Haruma
Giáo viên
20 tháng 4 2021

d,

\(|x-\frac{1}{3}|=\frac{5}{6}\Rightarrow \left[\begin{matrix} x-\frac{1}{3}=\frac{5}{6}\\ x-\frac{1}{3}=-\frac{5}{6}\end{matrix}\right.\Leftrightarrow \left[\begin{matrix} x=\frac{7}{6}\\ x=\frac{-1}{2}\end{matrix}\right.\)

e,

\(\frac{3}{4}-2|2x-\frac{2}{3}|=2\)

\(\Leftrightarrow 2|2x-\frac{2}{3}|=\frac{3}{4}-2=\frac{-5}{4}\)

\(\Leftrightarrow |2x-\frac{2}{3}|=-\frac{5}{8}<0\) (vô lý vì trị tuyệt đối của 1 số luôn không âm)

Vậy không tồn tại $x$ thỏa mãn đề bài.

f, 

\(\frac{2x-1}{2}=\frac{5+3x}{3}\Leftrightarrow 3(2x-1)=2(5+3x)\)

\(\Leftrightarrow 6x-3=10+6x\)

\(\Leftrightarrow 13=0\) (vô lý)

Vậy không tồn tại $x$ thỏa mãn đề bài.

AH
Akai Haruma
Giáo viên
20 tháng 4 2021

a,

$0-|x+1|=5$

$|x+1|=0-5=-5<0$ (vô lý do trị tuyệt đối của một số luôn không âm)

Do đó không tồn tại $x$ thỏa mãn điều kiện đề.

b,

\(2-|\frac{3}{4}-x|=\frac{7}{12}\)

\(|\frac{3}{4}-x|=2-\frac{7}{12}=\frac{17}{12}\)

\(\Rightarrow \left[\begin{matrix} \frac{3}{4}-x=\frac{17}{12}\\ \frac{3}{4}-x=\frac{-17}{12}\end{matrix}\right.\Rightarrow \left[\begin{matrix} x=\frac{-2}{3}\\ x=\frac{13}{6}\end{matrix}\right.\)

c, 

\(2|\frac{1}{2}x-\frac{1}{3}|-\frac{3}{2}=\frac{1}{4}\)

\(2|\frac{1}{2}x-\frac{1}{3}|=\frac{7}{4}\)

\(|\frac{1}{2}x-\frac{1}{3}|=\frac{7}{8}\)

\(\Rightarrow \left[\begin{matrix} \frac{1}{2}x-\frac{1}{3}=\frac{7}{8}\\ \frac{1}{2}x-\frac{1}{3}=-\frac{7}{8}\end{matrix}\right.\Rightarrow \left[\begin{matrix} x=\frac{29}{12}\\ x=\frac{-13}{12}\end{matrix}\right.\)