Cho 2 đường tròn (O) và (O') tiếp xúc ngoài ở A. Một cát tuyến kẻ qua A cắt (O) ở B; cắt (O') ở C. Kẻ đường kính BD và CE của (O) và (O')
Chứng minh:
a) D,A,E thẳng hàng
b) BD song song CE
CÁC BẠN GIÚP MÌNH NHA!! MÌNH CẦN GẤP LẮM
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có \(\widehat{OAC}=\widehat{O'AD}\left(đối.đỉnh\right)\)
Mặt khác \(\Delta OAC.cân.tại.O\left(OA=OC\right)\)
Nên \(\widehat{OAC}=\widehat{OCA}\)
Tương tự \(\Delta O'AD.cân.tại.O'\left(O'A=O'D\right)\)
Nên \(\widehat{O'AD}=\widehat{O'DA}\)
\(\Rightarrow\widehat{OCA}=\widehat{ADO'}\)
Mà 2 góc này ở vị trí so le trong
Vậy \(OC//O'D\)
a) AD và AF cách đều tâm O nên chúng bằng nhau.
b) Kẻ OI ⊥⊥ MN, OK ⊥⊥ PQ.
Trong đường tròn nhỏ, ta có: MN > PQ ⇒⇒ OI < OK.
(Dây lớn hơn thì gần tâm hơn)
Trong đường tròn lớn, OI < OK ⇒⇒ AE > AH.
(Dây gần tâm hơn thì lớn hơn)
c) A, B, O, C cách đều trung điểm AO.
d) OI<OK⇒OIOA<OKOAOI<OK⇒OIOA<OKOA
⇒sinˆOAI<sinˆOAK⇒ˆOAI<ˆOAK⇒ˆOAE<ˆOAH.
a) AD và AF cách đều tâm O nên chúng bằng nhau.
b) Kẻ OI \bot⊥ MN, OK \bot⊥ PQ.
Trong đường tròn nhỏ, ta có: MN > PQ \Rightarrow⇒ OI < OK.
(Dây lớn hơn thì gần tâm hơn)
Trong đường tròn lớn, OI < OK \Rightarrow⇒ AE > AH.
(Dây gần tâm hơn thì lớn hơn)
c) A, B, O, C cách đều trung điểm AO.
d) OI < OK\Rightarrow\frac{OI}{OA}<\frac{OK}{OA}OI<OK⇒OAOI<OAOK
\Rightarrow \sin{\widehat{OAI}}< \sin{\widehat{OAK}} \Rightarrow \widehat{OAI}<\widehat{OAK} \Rightarrow \widehat{OAE}<\widehat{OAH}.⇒sinOAI<sinOAK ⇒OAI<OAK⇒OAE<OAH.
a: Xét (O) có
ID,IA là các tiếp tuyến
Do đó: IO là phân giác của góc DIA
=>\(\widehat{DIA}=2\cdot\widehat{OIA}\)
Xét (O') có
IA,IE là các tiếp tuyến
Do đó: IO' là phân giác của góc AIE
=>\(\widehat{AIE}=2\cdot\widehat{AIO'}\)
Ta có: \(\widehat{DIA}+\widehat{EIA}=180^0\)(hai góc kề bù)
=>\(2\left(\widehat{OIA}+\widehat{O'IA}\right)=180^0\)
=>\(2\cdot\widehat{OIO'}=180^0\)
=>\(\widehat{OIO'}=90^0\)
b: Xét (O) có
ID,IA là các tiếp tuyến
Do đó: ID=IA
Xét (O') có
IA,IE là các tiếp tuyến
Do đó: IA=IE
Ta có: IA=IE
ID=IA
Do đó: ID=IE
=>I là trung điểm của DE
=>I là tâm đường tròn đường kính DE
Xét ΔDAE có
AI là bán kính
\(AI=\dfrac{DE}{2}\)
Do đó: ΔADE vuông tại A
=>A nằm trên (I)
Xét (I) có
IA là bán kính
O'O\(\perp\)IA tại A
Do đó: OO' là tiếp tuyến của (I)
=>O'O là tiếp tuyến của đường tròn đường kính DE
A B C D E O' O
Ta có: BD là đường kính => \(\widehat{DAB}=90\)
Tương tự ta có: \(\widehat{EAC}=90\)
Vậy => \(\widehat{DAE}=\widehat{DAB}+\widehat{EAC}=90+90=180\)
=> 3 điểm A,D,E nằm trên 1 đường thẳng (ĐPCM)
b) Ta có: (O) và (O') tiếp xúc nhau nên O,A,O' thẳng hàng
=> \(\widehat{CAO'}=\widehat{OBA}\)(đối đỉnh)
Măt khác, Xét tam giác cân AO'C có: \(\widehat{CAO'}=\widehat{O'CA}\)
Tương tự tam giác cân AO'B có: \(\widehat{OAB}=\widehat{OBA}\)
Từ 3 điều đó: ta suy ra: \(\widehat{ACO'}=\widehat{OBA}\)
Vậy BD // CE do 2 dóc ở vị trí so le trong