K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 2 2017

A B C D E O' O

Ta có: BD là đường kính => \(\widehat{DAB}=90\)

Tương tự ta có: \(\widehat{EAC}=90\)

Vậy => \(\widehat{DAE}=\widehat{DAB}+\widehat{EAC}=90+90=180\)

=> 3 điểm A,D,E nằm trên 1 đường thẳng (ĐPCM)

b) Ta có: (O) và (O') tiếp xúc nhau nên O,A,O' thẳng hàng

=> \(\widehat{CAO'}=\widehat{OBA}\)(đối đỉnh)

Măt khác, Xét tam giác cân AO'C có: \(\widehat{CAO'}=\widehat{O'CA}\)

Tương tự tam giác cân AO'B có: \(\widehat{OAB}=\widehat{OBA}\)

Từ 3 điều đó: ta suy ra: \(\widehat{ACO'}=\widehat{OBA}\)

Vậy BD // CE do 2 dóc ở vị trí so le trong

18 tháng 6 2019

HS tự chứng minh

4 tháng 3 2022

Ét ô étkhocroihuhu

30 tháng 9 2021

Ta có \(\widehat{OAC}=\widehat{O'AD}\left(đối.đỉnh\right)\)

Mặt khác \(\Delta OAC.cân.tại.O\left(OA=OC\right)\)

Nên \(\widehat{OAC}=\widehat{OCA}\)

Tương tự \(\Delta O'AD.cân.tại.O'\left(O'A=O'D\right)\)

Nên \(\widehat{O'AD}=\widehat{O'DA}\)

\(\Rightarrow\widehat{OCA}=\widehat{ADO'}\)

Mà 2 góc này ở vị trí so le trong

Vậy \(OC//O'D\)

22 tháng 8 2021

a) AD và AF cách đều tâm O nên chúng bằng nhau.

b) Kẻ OI  MN, OK  PQ.

Trong đường tròn nhỏ, ta có: MN > PQ  OI < OK.

(Dây lớn hơn thì gần tâm hơn)

Trong đường tròn lớn, OI < OK  AE > AH.

(Dây gần tâm hơn thì lớn hơn)

c) A, B, O, C cách đều trung điểm AO.

d) OI<OKOIOA<OKOAOI<OK⇒OIOA<OKOA

sinˆOAI<sinˆOAKˆOAI<ˆOAKˆOAE<ˆOAH.

22 tháng 8 2021

a) AD và AF cách đều tâm O nên chúng bằng nhau.

b) Kẻ OI \bot MN, OK \bot PQ.

Trong đường tròn nhỏ, ta có: MN > PQ \Rightarrow OI < OK.

(Dây lớn hơn thì gần tâm hơn)

Trong đường tròn lớn, OI < OK \Rightarrow AE > AH.

(Dây gần tâm hơn thì lớn hơn)

c) A, B, O, C cách đều trung điểm AO.

d) OI < OK\Rightarrow\frac{OI}{OA}<\frac{OK}{OA}OI<OKOAOI<OAOK

\Rightarrow \sin{\widehat{OAI}}< \sin{\widehat{OAK}} \Rightarrow \widehat{OAI}<\widehat{OAK} \Rightarrow \widehat{OAE}<\widehat{OAH}.sinOAI<sinOAK OAI<OAKOAE<OAH.

29 tháng 12 2023

a: Xét (O) có

ID,IA là các tiếp tuyến

Do đó: IO là phân giác của góc DIA

=>\(\widehat{DIA}=2\cdot\widehat{OIA}\)

Xét (O') có

IA,IE là các tiếp tuyến

Do đó: IO' là phân giác của góc AIE

=>\(\widehat{AIE}=2\cdot\widehat{AIO'}\)

Ta có: \(\widehat{DIA}+\widehat{EIA}=180^0\)(hai góc kề bù)

=>\(2\left(\widehat{OIA}+\widehat{O'IA}\right)=180^0\)

=>\(2\cdot\widehat{OIO'}=180^0\)

=>\(\widehat{OIO'}=90^0\)

b: Xét (O) có

ID,IA là các tiếp tuyến

Do đó: ID=IA

Xét (O') có

IA,IE là các tiếp tuyến

Do đó: IA=IE

Ta có: IA=IE

ID=IA

Do đó: ID=IE

=>I là trung điểm của DE

=>I là tâm đường tròn đường kính DE

Xét ΔDAE có

AI là bán kính

\(AI=\dfrac{DE}{2}\)

Do đó: ΔADE vuông tại A

=>A nằm trên (I)

Xét (I) có

IA là bán kính

O'O\(\perp\)IA tại A

Do đó: OO' là tiếp tuyến của (I)

=>O'O là tiếp tuyến của đường tròn đường kính DE