Cho hai điểm $B$, $C$ phân biệt. Tìm tập hợp những điểm $M$ thỏa mãn $\overrightarrow{C M} . \overrightarrow{C B}=\overrightarrow{C M}^2$.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\Leftrightarrow\overrightarrow{CB}\left(\overrightarrow{CA}-\overrightarrow{CM}\right)=0\)
\(\Leftrightarrow\overrightarrow{CB}.\left(\overrightarrow{CA}+\overrightarrow{MC}\right)=0\)
\(\Leftrightarrow\overrightarrow{CB}.\overrightarrow{MA}=0\)
Tập hợp M là đường thẳng qua A và vuông góc BC
a) \(\overrightarrow{MA}-\overrightarrow{MB}=\overrightarrow{MA}+\overrightarrow{BM}=\overrightarrow{BA}\)
Vậy bất kì điểm M nào nằm trên mặt phẳng cũng thỏa mãn:
\(\overrightarrow{MA}-\overrightarrow{MB}=\overrightarrow{BA}\).
b) Do \(\overrightarrow{MA}-\overrightarrow{MB}=\overrightarrow{MA}+\overrightarrow{BM}=\overrightarrow{BA}\) nên không tồn tại điểm M thỏa mãn: \(\overrightarrow{MA}-\overrightarrow{MB}=\overrightarrow{AB}\).
c) \(\overrightarrow{MA}+\overrightarrow{MB}=\overrightarrow{0}\) nên M là trung điểm của AB.
a,, CÓ \(\overrightarrow{MA}-\overrightarrow{MB}=\overrightarrow{BA}\Leftrightarrow\overrightarrow{BA}=\overrightarrow{BA}\)
Vậy với mọi điểm M thì đều thõa mãn
b, có \(\overrightarrow{MA}-\overrightarrow{MB}=\overrightarrow{AB}\Leftrightarrow\overrightarrow{BA}=\overrightarrow{AB}\) ( không thõa mãn)
vậy không có điểm M nào thõa mãn điều kện trên
c, có \(\overrightarrow{MA}+\overrightarrow{MB}=\overrightarrow{O}\) \(\Rightarrow\) M là trung điểm của AB
m thuộc đường tròn tâm i đường kính ab với i là trung điểm ab
Lời giải:
\(|\overrightarrow{MA}+\overrightarrow{MB}|=|\overrightarrow{MA}-\overrightarrow{MB}|\)
\(\Leftrightarrow (|\overrightarrow{MA}+\overrightarrow{MB}|)^2=(|\overrightarrow{MA}-\overrightarrow{MB}|)^2\)
\(\Leftrightarrow MA^2+MB^2+2\overrightarrow{MA}.\overrightarrow{MB}=MA^2+MB^2-2\overrightarrow{MA}.\overrightarrow{MB}\)
\(\Leftrightarrow 4\overrightarrow{MA}.\overrightarrow{MB}=\overrightarrow{0}\)
\(\Leftrightarrow \overrightarrow{MA}.\overrightarrow{MB}=\overrightarrow{0}\)
\(\Leftrightarrow \overrightarrow{MA}\perp \overrightarrow{MB}\)
Vậy các điểm $M$ thỏa mãn đề bài là những điểm thỏa mãn $MA\perp MB$
Ta có \(\overrightarrow{CM}.\overrightarrow{CB}=\overrightarrow{CM}^2\) \(\Leftrightarrow\overrightarrow{CM}.\overrightarrow{CB}-\overrightarrow{CM}^2=0\) \(\Leftrightarrow\overrightarrow{CM}\left(\overrightarrow{CB}-\overrightarrow{CM}\right)=0\) \(\Leftrightarrow\overrightarrow{CM}.\overrightarrow{MB}=\overrightarrow{0}\) \(\Leftrightarrow\) \(\overrightarrow{CM}\perp\overrightarrow{MB}\)
Như vậy những điểm M thỏa mãn \(\widehat{CMB}=90^o\) chính là những điểm thỏa mãn yêu cầu bài toán. Nói cách khác, tập hợp điểm M thỏa mãn đề bài là đường tròn đường kính BC.