vẽ góc bac và góc eac là hai góc kề bù thỏa mãn góc bac=60độ
a: tính góc cae
b: vẽ tia ad là tia phân giác của góc cae . chứng tỏ ac là tia phan giác của góc bac
c: gọi ag là tia đói của tia ac ,ah là tia phân giác của góc bag . chứng tỏ ad và ah là hai tia đói nhau
a) Ta có: \(\widehat{BAC}+\widehat{EAC}=180^0\)(hai góc kề bù)
\(\Leftrightarrow\widehat{EAC}+60^0=180^0\)
hay \(\widehat{EAC}=120^0\)
Vậy: \(\widehat{EAC}=120^0\)
b)
Ta có: AD là tia phân giác của \(\widehat{CAE}\)(gt)
nên \(\widehat{EAD}=\widehat{CAD}=\dfrac{\widehat{EAC}}{2}=\dfrac{120^0}{2}=60^0\)
Ta có: \(\widehat{EAD}+\widehat{BAD}=180^0\)(hai góc kề bù)
\(\Leftrightarrow\widehat{BAD}+60^0=180^0\)
hay \(\widehat{BAD}=120^0\)
Trên cùng một nửa mặt phẳng bờ chứa tia AB, ta có: \(\widehat{BAC}< \widehat{BAD}\left(60^0< 120^0\right)\)
nên tia AC nằm giữa hai tia AB và AD
Ta có: tia AC nằm giữa hai tia AB và AD(cmt)
mà \(\widehat{BAC}=\widehat{DAC}\left(=60^0\right)\)
nên AC là tia phân giác của \(\widehat{BAC}\)(Đpcm)