Chứng minh 1/2^2+1/3^2+…+1/2022^2<25/36
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
S = 1/3 + 1/3² + 1/3³ + ... + 1/3²⁰²¹ + 1/3²⁰²²
⇒ S/3 = 1/3² + 1/3³ + 1/3⁴ + ... + 1/3²⁰²² + 1/3²⁰²³
⇒ 2S/3 = S - S/3
= (1/3 + 1/3² + 1/3³ + ... + 1/3²⁰²¹ + 1/3²⁰²²) - (1/3² +1/3³ + 1/3⁴ + ... + 1/3²⁰²² + 1/3²⁰²³)
= 1/3 - 1/3²⁰²³
⇒ S = (1/3 - 1/3²⁰²³) : 2/3
= (1 - 1/3²⁰²²) : 2
Lại có: 1 - 1/3²⁰²² < 1
⇒ S < 1/2
A=1-\(\dfrac{1}{2^2}\)-\(\dfrac{1}{3^2}\)-...-\(\dfrac{1}{2022^2}\) Chứng minh A>\(\dfrac{1}{2022}\)
A=1-(1/2^2+1/3^2+...+1/2022^2)
1/2^2+1/3^2+...+1/2022^2<1/1*2+1/2*3+...+1/2021*2022=1-1/2022=2021/2022
=>-(1/2^2+...+1/2022^2)>-2021/2022
=>A>1/2022
A=1+2
20 +221 +2222 +...+2202122020 +2202222021
⇔2A=2121 +2222 +2323 +...+2202222021 +2202322022
⇔2A-A=(2121 +2222 +2323 +...+2202222021 +2202322022) - (1
20 +2121 +2222 +...+2202122020 +2202222021)
⇔A=2202322022 - 1
20
Vậy A-1=22023
22022
\(B=2021\cdot1\cdot2\cdot3\cdot...\cdot2022\cdot\left(1+\dfrac{1}{2}+...+\dfrac{1}{2022}\right)⋮2021\)
b,A= \(\dfrac{11}{15}<\dfrac{1}{21}+\dfrac{1}{22}+\dfrac{1}{23}+...+\dfrac{1}{59}+\dfrac{1}{60}<\dfrac{3}{2}\)
\(=(\dfrac{1}{21}+\dfrac{1}{22}+\dfrac{1}{23}+....+\dfrac{1}{40})+(\dfrac{1}{41}+...+1...\)
\(=(\dfrac{20}{20.21}+\dfrac{21}{21.22}+...+\dfrac{39}{39.40})+(40/...\)
\(20(\dfrac{1}{20.21}+\dfrac{1}{21.22}+...\dfrac{1}{39.40})+40(\dfrac{1}{40}...\)
\(20(\dfrac{1}{20}-\dfrac{1}{40})+40(\dfrac{1}{40}-\dfrac{1}{60})>\dfrac{11}{15}\)
Lại có \(A<40(\dfrac{1}{20.21}+...\dfrac{1}{39.40})+60(\dfrac{1}{40.41}+...+...\)
\(=40(\dfrac{1}{20}-\dfrac{1}{40})+60(\dfrac{1}{40}-\dfrac{1}{60})<\dfrac{3}{2}\)
=> \(\dfrac{11}{15}<\dfrac{1}{21}+\dfrac{1}{22}+\dfrac{1}{23}+...+\dfrac{1}{59}+\dfrac{1}{60}<\dfrac{3}{2}\)
a,\( \dfrac{1}{4}+ \dfrac{1}{16}+ \dfrac{1}{36}+ \dfrac{1}{64}+ \dfrac{1}{100}+ \dfrac{1}{144}+ \dfrac{1}{196}\)
= \( \dfrac{1}{4}+ \dfrac{1}{16}+ \dfrac{1}{36}+...+ \dfrac{1}{196} < \dfrac{1}{2^2-1}+ \dfrac{1}{4^2-1}+ \dfrac{1}{6^2-1}+...+ \dfrac{1}{14^2-1}\)
= \( \dfrac{1}{1.3}+ \dfrac{1}{3.5}+ \dfrac{1}{5.7}+...+ \dfrac{1}{13.15}\)
= \( \dfrac{1}{2}(1- \dfrac{1}{3}+ \dfrac{1}{3}- \dfrac{1}{5}+ \dfrac{1}{5}- \dfrac{1}{7}+ \dfrac{1}{7}-...- \dfrac{1}{13}+ \dfrac{1}{13}- \dfrac{1}{15})\)
= \( \dfrac{1}{2}(1- \dfrac{1}{15})< \dfrac{1}{2}\)
Vậy \( \dfrac{1}{4}+ \dfrac{1}{16}+ \dfrac{1}{36}+ \dfrac{1}{64}+ \dfrac{1}{100}+ \dfrac{1}{144}+ \dfrac{1}{196}\) \(<\dfrac{1}{2} \)
b)Tương tự câu a) nha bạn nhưng phải đổi là B=1/4+1/16+.....+1/196=1/2.2+1/4.4+.......+1/14.14
làm mấy bước tương tự câu a) cho đến khi ra B<1-\(\frac{1}{14}\)=\(\frac{13}{14}\)>\(\frac{7}{14}\)=\(\frac{1}{2}\)
Bạn nến xem lại đề bài phần b) : B phải lớn hơn 1/2 chứ
Em nên gõ công thức trực quan để đề bài được rõ ràng nhé