K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 2 2017

2xy - 6x + y = - 7

2xy - 2x.3 + y = - 7

2x(y - 3) + y = - 7

2x(y - 3) + y - 3 = - 10

(2x + 1)(y - 3) = - 10

=> 2x + 1 và y - 3 là ước của - 10

=> Ư(- 10) = { ± 1; ± 2; ± 5 ± 10 }

Vì 2x + 1 là số lẻ => 2x + 1 = { ± 1; ± 5 }

Nếu 2x + 1 = 5 thì y - 3 = - 2 => x = 2 thì y = 1

Nếu 2x + 1 = 1 thì y - 3 = - 10 => x = 0 thì y = - 7

Nếu 2x + 1 = - 1 thì y - 3 = 10 => x = - 1 thì y = 13

Nếu 2x + 1 = - 5 thì y - 3 = 2 => x = - 3 thì y = 5

Vậy ( x;y ) = { ( 2;1 ); ( 0;-7 ); ( -1;13 ); ( -3;5 ) }

5 tháng 3 2021

2xy+6x=y−22xy+6x=y−2

⇔2x(y+3)=y+3−5⇔2x(y+3)=y+3−5

⇔(2x−1)(y+3)=−5⇔(2x−1)(y+3)=−5

Xet U(-5) nhé bạn

5 tháng 3 2021

cảm ơn bạn nhìu nha

26 tháng 6 2023

6xy+4x-3y=8
=> 6xy -3y=8-4x
=>3y(2x-1)= -2(2x-1) +6
=>(2x-1)(3y+2)=6
mà x,y thuộc Z =>(2x-1),(3y+2)  thuộc Z =>(2x-1),(3y+2) thuộc U(6)   xong giải ra bình thường nhé mấy câu sau tương tự 
 

26 tháng 6 2023

chị giải nốt cho em phần a với ạ

 

NV
20 tháng 8 2021

\(\Leftrightarrow2xy-6x-5y=18\)

\(\Leftrightarrow2x\left(y-3\right)-5\left(y-3\right)=33\)

\(\Leftrightarrow\left(2x-5\right)\left(y-3\right)=33\)

Phương trình ước số cơ bản

25 tháng 9 2019

Ta có: \(6x+5y+18=2xy\)

\(\Leftrightarrow6x+5y-2xy=-18\)

\(\Leftrightarrow2x\left(3-y\right)+5y=-18\)

\(\Leftrightarrow2x\left(3-y\right)+5y-15=-18-15\)

\(\Leftrightarrow2x\left(3-y\right)+5\left(y-3\right)=-33\)

\(\Leftrightarrow2x\left(3-y\right)-5\left(3-y\right)=-33\)

\(\Leftrightarrow\left(3-y\right)\left(2x-5\right)=-33\)

Dễ rồi

25 tháng 6 2023

a, (3 - \(x\))(4y + 1) = 20

   Ư(20) = { -20; -10; -5; -4; -2; -1; 1; 2; 4; 5; 10; 20}

Lập bảng ta có:

\(3-x\) -20 -10 -5 -4 -2 -1 1 2 4 5 10 20
\(x\) 23  13 8 7 5 4 2 1 -1 -2 -7 -17
4\(y\) + 1 -1 -2 -4 -5 -10 -20 20 10 5 4 2 1
\(y\) -1/2 -3/4 -5/4 -6/4 -11/4 -21/4 19/4 9/4 1 3/4 1/4 0

Vậy các cặp \(x;y\) nguyên thỏa mãn đề bài là:

(\(x;y\)) =(-1; 1); (-17; 0)

 

 

25 tháng 6 2023

b, \(x\left(y+2\right)\)+ 2\(y\) = 6

    \(x\) = \(\dfrac{6-2y}{y+2}\)

\(x\in\) Z ⇔ 6 - \(2y⋮\) \(y\) + 2 ⇒-(2y + 4) +10 ⋮ \(y\) + 2 ⇒ -2(\(y\)+2) +10 ⋮ \(y\)+2

⇒ 10 ⋮ \(y\) + 2

Ư(10) = { -10; -5; -2; -1; 1; 2; 5; 10}

Lập bảng ta có:

\(y+2\) -10 -5 -2 -1 1 2 5 10
\(y\) -12 -7 -4 -3 -1 0 3 8
\(x=\) \(\dfrac{6-2y}{y+2}\) -3 -4 -7 -12 8 3 0 -1

 Theo bảng trên ta có các cặp \(x;y\)

 nguyên thỏa mãn đề bài lần lượt là:

(\(x;y\)    ) =(-3; -12); (-4; -7); (-12; -3); (8; -1); (3; 0); (0;3 (-1; 8)                           

 

5 tháng 11 2017

ta có: \(6x+5y+15=2xy.\)

\(\Leftrightarrow2x\left(3-y\right)-5\left(3-y\right)=-30\)

\(\Leftrightarrow\left(2x-5\right)\left(3-y\right)=-30\)

mà 2x-5 là số lẻ nên \(2x-5\in\left\{1;-1;3;-3;5;-5;15;-15\right\}\)

                             \(\Leftrightarrow x\in\left\{3;2;4;1;5;0;10;-5\right\}\)

\(\Leftrightarrow y\in\left\{33;-27;13;-7;9;-3;5;1\right\}\)

19 tháng 6 2018

\(x-2xy+y=0\Rightarrow2\left(x-2xy+y\right)=0\Rightarrow2x-4xy+2y=0\)

\(\Rightarrow2x\left(1-2y\right)+2y-1=2x\left(1-2y\right)-\left(1-2y\right)=-1\Rightarrow\left(2x-1\right)\left(1-2y\right)=-1\)

\(\Rightarrow2x-1;1-2y\inƯ\left(1\right)\Rightarrow2x-1;1-2y=+-1\)

\(2x-1=1\Rightarrow2x=2\Rightarrow x=1\)thì \(1-2y=-1\Rightarrow-2y=-2\Rightarrow y=1\)

\(2x-1=-1\Rightarrow2x=0\Rightarrow x=0\)thì \(1-2y=1\Rightarrow-2y=0\Rightarrow y=0\)

vậy x=1 thì y=1; x=0 thì y=0

x - 2xy + y = 0
<=> 2x - 4xy + 2y = 0
<=> 2x - 4xy + 2y - 1 = -1
<=> (2x - 4xy) - (1 - 2y) = -1
<=> 2x(1 - 2y) - (1 - 2y) = -1
<=> (2x - 1)(1 - 2y) = - 1
<=> 2x - 1 = -1 và 1 - 2y = 1
hoặc 2x - 1 = 1 và 1 - 2y = -1
<=>2x=2 và 2y=2
<=>x=1 và y=1