Cho tam giác nhọn ABC nội tiếp đường tròn ( O ; R ) Hai đường cao AD BE ( D thuộc BC E thuộc AC ) lần lượt cắt đường tròn (O) tại các điểm thứ hai là M và N
a) Chứng minh: CDHE,AEDB là tứ giác nội tiếp đường tròn
b) Chứng minh MN // DE
c) Cho (O) và dây AB cố định Chứng minh rẳng độ dài bán kính đường tròn ngoại tiếp tam giác CDE luôn không đổi khi điểm C di chuyển trên cung lớn
a) Xét tứ giác CDHE có
\(\widehat{CDH}\) và \(\widehat{CEH}\) là hai góc đối
\(\widehat{CDH}+\widehat{CEH}=180^0\left(90^0+90^0=180^0\right)\)
Do đó: CDHE là tứ giác nội tiếp(Dấu hiệu nhận biết tứ giác nội tiếp)
Xét tứ giác AEDB có
\(\widehat{AEB}=\widehat{ADB}\left(=90^0\right)\)
\(\widehat{AEB};\widehat{ADB}\) là các góc cùng nhìn cạnh AB dưới những góc bằng nhau
Do đó: AEDB là tứ giác nội tiếp(Dấu hiệu nhận biết tứ giác nội tiếp)