có bao nhiêu số có 5 chữ số viết từ các chữ số 5,7,9 trong đó chữ số 5 và 9 chỉ xuất hiện 1 lần
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Số số thỏa mãn: \(\dfrac{9!}{5!}=3024\) số
(Đây là loại hoán vị lặp)
(*) Lập các số 8 chữ số có 3 chữ số 9.
Đưa các chữ số vào ô:
. | . | . | . | . | . | . | . |
TH1: Có số 0
Đưa 0 vào : 7 cách
Lấy 3 ô bất kì trong 7 ô còn lại để chứa 3 chữ số 9: \(C^3_7\) cách
Chọn 4 chữ số trong 8 chữ số chưa dùng : \(A^4_8\) cách
=> TH1 có \(7\cdot C^3_7\cdot A^4_8=411600\)
TH2: Không có số 0
Lấy 3 ô bất kì trong 8 ô còn lại để chứa 3 chữ số 9: \(C^3_8\) cách
Chọn 5 chữ số trong 8 chữ số chưa dùng (không dùng 0) : \(A^5_8\) cách
=> TH2 có \(C^3_8A^5_8=376320\)
=> Lập được 411600 + 376320 =787920 số 8 chữ số có 3 chữ số 9
(*) Lập các số có 3 chữ số 9 mà 3 chữ số 9 đứng cạnh nhau :
Đặt \(\alpha=999\)
Đưa các chữ số vào ô:
\(\alpha\) | . | . | . | . | . |
TH1: Có số 0
Đưa 0 vào : 5 cách
Đưa \(\alpha\) vào : 5 cách
Chọn 4 chữ số trong 8 chữ số chưa dùng : \(A^4_8\) cách
=> TH1 : \(5\cdot5A^4_8=42000\)
TH2: Không có số 0
Đưa \(\alpha\) vào : 6 cách
Chọn 5 chữ số trong 8 chữ số chưa dùng (không dùng 0) : \(A^5_8\) cách
=> TH2: \(6\cdot A^5_8=40320\)
=> Lập được 42000 + 40320 =82320 số 8 chữ số có 3 chữ số 9 mà 3 chữ số 9 đứng cạnh nhau
Vậy lập được 787920 - 82320 = 705600 số 8 chữ số có 3 chữ số 9 mà 3 chữ số 9 không đứng cạnh nhau
Số chia hết cho 9 mà mỗi số xuất hiện 1 lần.
Ta có: 1+2+3+4+5+6=21
Vậy các số chia hết cho 9 sẽ có tổng các chữ số là 9 hoặc 18
Số có 2 chữ số: 36; 63; 45; 54 => 4 số
Số có 3 chữ số: 126; 621; 162; 612; 216; 261; 234; 243; 342; 324; 432; 423; 135; 153; 351; 315; 513; 531 => 18 số
Số có 4 chữ số: 3456; 3465; 3546; 3564; 3654; 3645 => 6 số x 4 cách đổi = 24 số
Số có 5 chữ số: 12456; 12465; 12564; 12546; 12645; 12654 => Số lượng: 6 x 4 x 5 = 120 số
Tổng thoả mãn: 4+18+24+120= 166(số)
Chữ số hàng đơn vị có 5 cách chọn
Xếp 5 chữ số còn lại sao cho không có 2 chữ số 2 nào đứng cạnh nhau có đúng 1 cách dạng 2x2y2 trong đó x;y là chữ số bất kì khác được chọn từ 8 chữ số còn lại
Số số thỏa mãn: \(5.A_8^2=...\)
Số tự nhiên có 8 chữ số \(\overline{abcdefgh}\).
TH1: \(h=0\)
\(\overline{abcdefg}\) có \(\dfrac{7!}{2!.3!}=420\) cách lập.
\(\Rightarrow\) Lập được 420 số thỏa mãn yêu cầu.
TH2: \(h=5\)
\(\overline{abcdefg}\) có \(\dfrac{7!}{2!.3!}-\dfrac{6!}{2!.3!}=360\) cách lập.
\(\Rightarrow\) Lập được 360 số thỏa mãn yêu cầu.
Vậy lập được \(420+360=780\) số tự nhiên thỏa mãn yêu cầu bài toán.
Bạn có thể giải thích phần công thức được không vậy. Mình hiểu hơi chậm. Bạn thông cảm. Mình cảm ơn nhiều.
Các số viết được là: 9052; 9025; 9502; 9520; 9205; 9250; 5092; 5029; 5209; 5290; 5920; 5902; 2059; 2095; 2905; 2950; 2509; 2590
chỉ có số 579 thôi nha bạn