cho a,b,c >=0 thảo mãn 2a+b=6-3c và 3a+4b=3c+4
tìm MIN và MAX của B = 2a+3b-4c
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
3a+4b-3c=4. Tìm GTNN của biểu thức : A = 2a+3b-4c? ... Cho a;b;c là các số không âm thỏa mãn:2a+b=6-3c;3a+4b=3c+4.Tìm min ... T = a −2 b 2 a − b +2 a −3 b 2 a + b. Đọc tiếp. ..... cho a và b là hai số thực thỏa mãn 4a + b = 5ab và 2a>b>0.
\(\hept{\begin{cases}2a+b+2c=6\\3a+4b-3c=4\end{cases}}\)\(\Rightarrow a+3b-5c=-2\)
\(\Rightarrow3b=-2+5c-a\)\(\Rightarrow3b+2a-4c=-2+5c-a+2a-4c\)
\(\Rightarrow P=-2+a+c\)
Lại có : \(2a+b+2c=6\Rightarrow2\left(a+c\right)\le6\)
\(\Rightarrow a+c\le3\)
\(\Rightarrow P\le-2+3=1\Rightarrow P\le1\)
Dấu " = " sảy ra \(\Leftrightarrow\hept{\begin{cases}b=0\\3a-3c=4\\2a+2c=6\end{cases}}\)\(\Rightarrow\hept{\begin{cases}b=0\\3a-3c=4\\3a+3c=9\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}a=\frac{13}{6}\\b=0\\c=\frac{5}{6}\end{cases}}\)
Chị chỉ tìm được Max thui
\(\hept{\begin{cases}2a+b+2c=6\\3a+4b-3c=4\end{cases}}\)
<=> \(\hept{\begin{cases}b+2c=6-2a\\4b-3c=4-3a\end{cases}}\)
<=> \(\hept{\begin{cases}c=\frac{20}{11}-\frac{5a}{11}\\b=\frac{26}{11}-\frac{12}{11}a\end{cases}}\)
P = \(2a+3\left(\frac{26}{11}-\frac{12}{11}a\right)-4\left(\frac{20}{11}-\frac{5a}{11}\right)\)
\(=-\frac{2}{11}+\frac{6}{11}a\ge-\frac{2}{11}\)
Dấu "=" xảy ra <=> a = 0 => c =20/11 và b = 26/11
Vậy min P = -2/11 tại a = 0; b = 26/11 và c= 20/11
Sẵn tiện mk chỉ cho bn luôn dạng này nhé.
Phân tích:
Với \(\alpha,\beta,\gamma>0\) thỏa \(\alpha< 2,\beta< 3,\gamma< 4\) ta có:
\(A=2a+3b+4c+\dfrac{3}{a}+\dfrac{9}{2b}+\dfrac{4}{c}\)
\(=\left[\left(2-\alpha\right)a+\dfrac{3}{a}\right]+\left[\left(3-\beta\right)b+\dfrac{9}{2b}\right]+\left[\left(4-\gamma\right)c+\dfrac{4}{c}\right]+\left(\alpha a+\beta b+\gamma c\right)\)
\(\ge2\sqrt{3.\left(2-\alpha\right)}+2\sqrt{\dfrac{9}{2}.\left(3-\beta\right)}+2\sqrt{4.\left(4-\gamma\right)}+\left(\alpha a+\beta b+\gamma c\right)\)
Chọn \(\alpha,\beta,\gamma\) (thỏa đk trên) sao cho:
\(\left\{{}\begin{matrix}\left(2-\alpha\right)a=\dfrac{3}{a}\\\left(3-\beta\right)b=\dfrac{9}{2b}\\\left(4-\gamma\right)c=\dfrac{4}{c}\\\alpha=\dfrac{\beta}{2}=\dfrac{\gamma}{3}\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}a=\sqrt{\dfrac{3}{2-\alpha}}\\b=\sqrt{\dfrac{9}{2\left(3-\beta\right)}}\\c=\sqrt{\dfrac{4}{\left(4-\gamma\right)}}\\\alpha=\dfrac{\beta}{2}=\dfrac{\gamma}{3}\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}a=\sqrt{\dfrac{3}{2-\alpha}}\\b=\sqrt{\dfrac{9}{6-4\alpha}}\\c=\sqrt{\dfrac{4}{4-3\alpha}}\\\alpha=\dfrac{\beta}{2}=\dfrac{\gamma}{3}\end{matrix}\right.\)
Ta có: \(a+2b+3c\ge20\). Xác định điểm rơi: \(a+2b+3c=20\)
\(\Rightarrow\sqrt{\dfrac{3}{2-\alpha}}+2\sqrt{\dfrac{9}{6-4\alpha}}+3\sqrt{\dfrac{4}{4-3\alpha}}=20\)
Giải ra ta có \(\alpha=\dfrac{5}{4}\Rightarrow\beta=\dfrac{5}{2};\gamma=\dfrac{15}{4}\)
Lời giải:
Ta có: \(A=2a+3b+4c+\dfrac{3}{a}+\dfrac{9}{2b}+\dfrac{4}{c}\)
\(=\left(\dfrac{3a}{4}+\dfrac{3}{a}\right)+\left(\dfrac{b}{2}+\dfrac{9}{2b}\right)+\left(\dfrac{c}{4}+\dfrac{4}{c}\right)+\left(\dfrac{5a}{4}+\dfrac{5b}{2}+\dfrac{15c}{4}\right)\)
\(\ge^{Cauchy}2\sqrt{\dfrac{3a}{4}.\dfrac{3}{a}}+2\sqrt{\dfrac{b}{2}.\dfrac{9}{2b}}+2\sqrt{\dfrac{c}{4}.\dfrac{4}{c}}+\dfrac{5}{4}\left(a+2b+3c\right)\)
\(=3+3+2+\dfrac{5}{4}\left(a+2b+3c\right)\)
\(\ge8+\dfrac{5}{4}.20=33\)
Dấu "=" xảy ra khi \(\left\{{}\begin{matrix}\dfrac{3a}{4}=\dfrac{3}{a}\\\dfrac{b}{2}=\dfrac{9}{2b}\\\dfrac{c}{4}=\dfrac{4}{c}\\a+2b+3c=20\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=2\\b=3\\c=4\end{matrix}\right.\)
Vậy \(MinA=33\), đạt được khi \(a=2;b=3;c=4\)
Đặt \(\dfrac{a}{b}=\dfrac{c}{d}=k\)
=>\(a=bk;c=dk\)
1: \(\dfrac{2a+3c}{2b+3d}=\dfrac{2\cdot bk+3\cdot dk}{2b+3d}=\dfrac{k\left(2b+3d\right)}{2b+3d}=k\)
\(\dfrac{2a-3c}{2b-3d}=\dfrac{2bk-3dk}{2b-3d}=\dfrac{k\left(2b-3d\right)}{2b-3d}=k\)
Do đó: \(\dfrac{2a+3c}{2b+3d}=\dfrac{2a-3c}{2b-3d}\)
2: \(\dfrac{4a-3b}{4c-3d}=\dfrac{4\cdot bk-3b}{4\cdot dk-3d}=\dfrac{b\left(4k-3\right)}{d\left(4k-3\right)}=\dfrac{b}{d}\)
\(\dfrac{4a+3b}{4c+3d}=\dfrac{4bk+3b}{4dk+3d}=\dfrac{b\left(4k+3\right)}{d\left(4k+3\right)}=\dfrac{b}{d}\)
Do đó: \(\dfrac{4a-3b}{4c-3d}=\dfrac{4a+3b}{4c+3d}\)
3: \(\dfrac{3a+5b}{3a-5b}=\dfrac{3bk+5b}{3bk-5b}=\dfrac{b\left(3k+5\right)}{b\left(3k-5\right)}=\dfrac{3k+5}{3k-5}\)
\(\dfrac{3c+5d}{3c-5d}=\dfrac{3dk+5d}{3dk-5d}=\dfrac{d\left(3k+5\right)}{d\left(3k-5\right)}=\dfrac{3k+5}{3k-5}\)
Do đó: \(\dfrac{3a+5b}{3a-5b}=\dfrac{3c+5d}{3c-5d}\)
4: \(\dfrac{3a-7b}{b}=\dfrac{3bk-7b}{b}=\dfrac{b\left(3k-7\right)}{b}=3k-7\)
\(\dfrac{3c-7d}{d}=\dfrac{3dk-7d}{d}=\dfrac{d\left(3k-7\right)}{d}=3k-7\)
Do đó: \(\dfrac{3a-7b}{b}=\dfrac{3c-7d}{d}\)