K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 11 2022

tưởng thế nào lên hỏi bài giống t :))

5 tháng 5 2018

Bài này dễ mà!

Có: \(xy+2x=27-3y\)

\(x\left(y+2\right)=33-3\left(y+2\right)\)

\(x\left(y+2\right)+3\left(y+2\right)=33\)

\(\left(x+3\right)\left(y+2\right)=33\)

Đến phần này chắc bạn tự làm đc rồi nhỉ

3 tháng 3 2021

chủ quan

Bạn vào hỏi đáp 247 hỏi đi . Ở đấy đặt câu hỏi cái trả lời luôn.

31 tháng 8 2020

( 32x )y = 274

<=> 32xy = 274

<=> 32xy = ( 33 )4

<=> 32xy = 312

<=> 2xy = 12

<=> xy = 6

Vậy tích xy = 6

7 tháng 10 2015

3(3x-2)=-5(1-2x)

9x-6   =-5+10x

-6+5   =10x-9x

x        =-1

 

 

Đặt X/-3=Y/5=k

=>X=-3k

    Y=5k

xy=-5/27<=>-3k.5k=27

=>k=-1.8

x=-1.8 .-3=5.4

y=-1.8 .5=-9

11 tháng 8 2017

Ta có BĐT \(x^2+1\ge2x\Leftrightarrow\left(x-1\right)^2\ge0\forall x\in R\)

Tương tự: \(y^2+1\ge2y;z^2+1\ge2z\)

\(\Rightarrow x^2+y^2+z^2+3\ge2\left(x+y+z\right)\left(1\right)\)

Và BĐT \(x^2+y^2+z^2\ge xy+yz+xz\left(2\right)\)

\(\Leftrightarrow\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2\ge0\forall x,y,z\in R\)

Cộng theo vế 2 BĐT (1);(2) ta có:

\(2\left(x^2+y^2+z^2\right)+3\ge45\)

\(\Rightarrow2\left(x^2+y^2+z^2\right)\ge42\Rightarrow x^2+y^2+z^2\ge21\)

Khi x=y=z=1

11 tháng 8 2017

Sửa đề : cho \(CM:x^2+y^2+z^2\ge21\)

Ta có : \(\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2\ge0\)

\(\Leftrightarrow2x^2+2y^2+2z^2-2xy-2xy-2xz\ge0\)

\(\Leftrightarrow x^2+y^2+z^2-xy-yz-xz\ge0\)

\(\Rightarrow x^2+y^2+z^2\ge xy+yz+xz\)(1)

Ta lại có : \(\left(x-1\right)^2+\left(y-1\right)^2+\left(z-1\right)^2\ge0\)

\(\Leftrightarrow x^2+y^2+z^2-2x-2y-2z+3\ge0\)

\(\Rightarrow x^2+y^2+z^2\ge2x+2y+2z-3\)(2)

Cộng vế với vế của (1); (2) lại ta được :

\(2\left(x^2+y^2+z^2\right)\ge xy+yz+xy+2x+2y+2z-3\)

\(\Leftrightarrow2\left(x^2+y^2+z^2\right)\ge45-3=42\)

\(\Rightarrow x^2+y^2+z^2\ge\frac{42}{2}=21\)(đpcm)