Cho A =\(\dfrac{2\sqrt{x}+4}{\sqrt{x}+3}\) . Tìm x để A là số nguyên
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: ĐKXĐ: \(\left\{{}\begin{matrix}x>=0\\x\notin\left\{4;1\right\}\end{matrix}\right.\)
Ta có: \(A=\dfrac{x-4\sqrt{x}+3-\left(2x-4\sqrt{x}-\sqrt{x}+2\right)+x+2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-1\right)}\)
\(=\dfrac{2x-4\sqrt{x}+5-2x+5\sqrt{x}-2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-1\right)}\)
\(=\dfrac{\sqrt{x}+3}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-1\right)}\)
a: ĐKXĐ: \(\left\{{}\begin{matrix}x>=0\\x\notin\left\{1;4\right\}\end{matrix}\right.\)
\(A=\dfrac{\sqrt{x}-3}{\sqrt{x}-2}-\dfrac{2\sqrt{x}-1}{\sqrt{x}-1}+\dfrac{x-2}{x-3\sqrt{x}+2}\)
\(=\dfrac{\sqrt{x}-3}{\sqrt{x}-2}-\dfrac{2\sqrt{x}-1}{\sqrt{x}-1}+\dfrac{x-2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-1\right)}\)
\(=\dfrac{\left(\sqrt{x}-3\right)\left(\sqrt{x}-1\right)-\left(2\sqrt{x}-1\right)\left(\sqrt{x}-2\right)+x-2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-1\right)}\)
\(=\dfrac{x-4\sqrt{x}+3-2x+5\sqrt{x}-2+x-2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-1\right)}\)
\(=\dfrac{\sqrt{x}-1}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-1\right)}=\dfrac{1}{\sqrt{x}-2}\)
b: Để A>2 thì A-2>0
=>\(\dfrac{1-2\left(\sqrt{x}-2\right)}{\sqrt{x}-2}>0\)
=>\(\dfrac{5-2\sqrt{x}}{\sqrt{x}-2}>0\)
=>\(\dfrac{2\sqrt{x}-5}{\sqrt{x}-2}< 0\)
TH1: \(\left\{{}\begin{matrix}2\sqrt{x}-5>0\\\sqrt{x}-2< 0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}\sqrt{x}>\dfrac{5}{2}\\\sqrt{x}< 2\end{matrix}\right.\)
=>\(x\in\varnothing\)
TH2: \(\left\{{}\begin{matrix}2\sqrt{x}-5< 0\\\sqrt{x}-2>0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}\sqrt{x}< \dfrac{5}{2}\\\sqrt{x}>2\end{matrix}\right.\)
=>\(2< \sqrt{x}< \dfrac{5}{2}\)
=>4<x<25/4
c: Để A là số nguyên thì \(1⋮\sqrt{x}-2\)
=>\(\sqrt{x}-2\in\left\{1;-1\right\}\)
=>\(\sqrt{x}\in\left\{3;1\right\}\)
=>\(x\in\left\{1;9\right\}\)
kết hợp ĐKXĐ, ta được: x=9
a: Ta có: \(A=\dfrac{\sqrt{x}}{\sqrt{x}-1}+\dfrac{3}{\sqrt{x}+1}-\dfrac{6\sqrt{x}-4}{x-1}-1\)
\(=\dfrac{x+\sqrt{x}+3\sqrt{x}-4-6\sqrt{x}+4}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}-1\)
\(=\dfrac{x-2\sqrt{x}-x+1}{x-1}\)
\(=\dfrac{-2\sqrt{x}+1}{x-1}\)
1: Ta có: \(A=\dfrac{2\sqrt{x}-9}{x-5\sqrt{x}+6}-\dfrac{\sqrt{x}+3}{\sqrt{x}-2}-\dfrac{2\sqrt{x}+1}{3-\sqrt{x}}\)
\(=\dfrac{2\sqrt{x}-9-\left(x-9\right)+\left(2\sqrt{x}+1\right)\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}-2\right)}\)
\(=\dfrac{2\sqrt{x}-9-x+9+2x-4\sqrt{x}+\sqrt{x}-2}{\left(\sqrt{x}-3\right)\left(\sqrt{x}-2\right)}\)
\(=\dfrac{x-\sqrt{x}-2}{\left(\sqrt{x}-3\right)\left(\sqrt{x}-2\right)}\)
\(=\dfrac{\sqrt{x}+1}{\sqrt{x}-3}\)
Để \(A=-\dfrac{1}{\sqrt{x}}\) thì \(x+\sqrt{x}=-\sqrt{x}+3\)
\(\Leftrightarrow x+2\sqrt{x}-3=0\)
\(\Leftrightarrow\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)=0\)
\(\Leftrightarrow x=1\left(nhận\right)\)
2: Để A nguyên thì \(\sqrt{x}+1⋮\sqrt{x}-3\)
\(\Leftrightarrow\sqrt{x}-3\in\left\{-1;1;2;-2;4;-4\right\}\)
\(\Leftrightarrow\sqrt{x}\in\left\{2;4;5;1;7\right\}\)
\(\Leftrightarrow x\in\left\{16;25;1;49\right\}\)
a: Ta có: \(A=\dfrac{15\sqrt{x}-11}{x+2\sqrt{x}-3}-\dfrac{3\sqrt{x}-2}{\sqrt{x}-1}-\dfrac{2\sqrt{x}+3}{\sqrt{x}+3}\)
\(=\dfrac{15\sqrt{x}-11-\left(3x+7\sqrt{x}-6\right)-\left(2x+\sqrt{x}-3\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}\)
\(=\dfrac{15\sqrt{x}-11-3x-7\sqrt{x}+6-2x-\sqrt{x}+3}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}\)
\(=\dfrac{-5x+7\sqrt{x}-2}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}\)
\(=\dfrac{-5\sqrt{x}+2}{\sqrt{x}+3}\)
\(a,P=B:A\)
\(=\left(\dfrac{\sqrt{x}+1}{\sqrt{x}-3}\right):\left(\dfrac{2}{\sqrt{x}-3}+\dfrac{1}{\sqrt{x}+3}\right)\left(ĐKXĐ:x\ge0;x\ne9\right)\)
\(=\left(\dfrac{\sqrt{x}+1}{\sqrt{x}-3}\right):\left[\dfrac{2\left(\sqrt{x}+3\right)+\sqrt{x}-3}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\right]\)
\(=\left(\dfrac{\sqrt{x}+1}{\sqrt{x}-3}\right):\left[\dfrac{3\sqrt{x}+3}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\right]\)
\(=\dfrac{\sqrt{x}+1}{\sqrt{x}-3}\cdot\dfrac{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}{3\left(\sqrt{x}+1\right)}\)
\(=\dfrac{\sqrt{x}+3}{3}\)
\(b,\) Để \(P=\dfrac{\sqrt{x}+3}{3}\) có giá trị nguyên
thì \(\sqrt{x}+3⋮3\)
\(\Leftrightarrow\sqrt{x}+3\in B\left(3\right)\)
\(\Leftrightarrow\sqrt{x}\in B\left(3\right)\)
Kết hợp với điều kiện, ta được:
\(P\) nguyên khi \(x=m^2\left(m\in Z;m⋮3;m\ne3\right)\)
#Toru
a:
ĐKXĐ: x>=0; x<>9
\(A=\dfrac{2\sqrt{x}+6+\sqrt{x}-3}{\left(x-9\right)}=\dfrac{3\sqrt{x}+3}{x-9}\)
\(P=B:A=\dfrac{\sqrt{x}+1}{\sqrt{x}-3}\cdot\dfrac{x-9}{3\left(\sqrt{x}+1\right)}=\dfrac{\sqrt{x}+3}{3}\)
b: P nguyên khi \(\sqrt{x}+3⋮3\)
=>\(\sqrt{x}\in B\left(3\right)\)
=>\(x=k^2\left(k\in Z;k⋮3\right)\)
\(A=\dfrac{\sqrt{x}-3+4}{\sqrt{x}-3}=1+\dfrac{4}{\sqrt{x}-3}\)
Để A nguyên \(\Rightarrow4⋮\left(\sqrt{x}-3\right)\Rightarrow\sqrt{x}-3=Ư\left(4\right)\)
Mà \(\sqrt{x}-3\ge-3\Rightarrow\sqrt{x}-3=\left\{-2;-1;1;2;4\right\}\)
\(\Rightarrow\sqrt{x}=\left\{1;2;4;5;7\right\}\)
\(\Rightarrow x=\left\{1;4;16;25;49\right\}\)
Ta có: \(P=A\cdot B\) (ĐK: \(x>0;x\ne4\))
\(=\left(\dfrac{3\sqrt{x}-6}{x-2\sqrt{x}}+\dfrac{\sqrt{x}-3}{\sqrt{x}}-\dfrac{1}{2-\sqrt{x}}\right)\left(\dfrac{\sqrt{x}-2}{\sqrt{x}+9}\right)\)
\(=\left[\dfrac{3\left(\sqrt{x}-2\right)}{\sqrt{x}\left(\sqrt{x}-2\right)}+\dfrac{\sqrt{x}-3}{\sqrt{x}}+\dfrac{1}{\sqrt{x}-2}\right]\left(\dfrac{\sqrt{x}-2}{\sqrt{x}+9}\right)\)
\(=\left(\dfrac{3+\sqrt{x}-3}{\sqrt{x}}+\dfrac{1}{\sqrt{x}-2}\right)\left(\dfrac{\sqrt{x}-2}{\sqrt{x}+9}\right)\)
\(=\left(1+\dfrac{1}{\sqrt{x}-2}\right)\left(\dfrac{\sqrt{x}-2}{\sqrt{x}+9}\right)\)
\(=\dfrac{\sqrt{x}-1}{\sqrt{x}-2}\cdot\dfrac{\sqrt{x}-2}{\sqrt{x}+9}\)
\(=\dfrac{\sqrt{x}-1}{\sqrt{x}+9}\)
Với x > 0; x ≠ 4 thì \(\sqrt{P}< \dfrac{1}{3}\Leftrightarrow P< \dfrac{1}{9}\)
\(\Leftrightarrow\dfrac{\sqrt{x}-1}{\sqrt{x}+9}< \dfrac{1}{9}\)
\(\Leftrightarrow\dfrac{\sqrt{x}-1}{\sqrt{x}+9}-\dfrac{1}{9}< 0\)
\(\Leftrightarrow\dfrac{9\left(\sqrt{x}-1\right)}{9\left(\sqrt{x}+9\right)}-\dfrac{\sqrt{x}+9}{9\left(\sqrt{x}+9\right)}< 0\)
\(\Leftrightarrow\dfrac{9\sqrt{x}-9-\sqrt{x}-9}{9\sqrt{x}+81}< 0\)
\(\Leftrightarrow\dfrac{8\sqrt{x}-18}{9\sqrt{x}+18}< 0\)
Ta thấy: \(9\sqrt{x}+18>0\forall x\)
\(\Rightarrow8\sqrt{x}-18< 0\)
\(\Rightarrow\sqrt{x}< \dfrac{18}{8}\)
\(\Rightarrow\sqrt{x}< \dfrac{9}{4}\Leftrightarrow x< \dfrac{81}{16}\)
Kết hợp với điều kiện, ta được: \(0< x\le5\)\(;x\ne4\)
\(\Rightarrow x\in\left\{1;2;3;5\right\};x\in Z\) thì \(\sqrt{P}< \dfrac{1}{3}\)
#Urushi
\(A=\dfrac{\sqrt[2]{x}+4}{\sqrt{x}+3}\)
Ta gọi \(\sqrt{x}=a\)
=> Ta thay \(\sqrt{x}=a\), từ đó ta có:
\(A=\dfrac{a+4}{a+3}\) \(\Rightarrow A=\dfrac{a+3+1}{a+3}\Leftrightarrow A=1+\dfrac{1}{a+3}\)\(\left(\dfrac{1}{a+3}\inℤ\right)\)
\(\Rightarrow1⋮\left(a-3\right)\Rightarrow a+3\inƯ\left(1\right)\)
mà \(Ư\left(1\right)\in\left\{\pm1\right\}\)
\(\Rightarrow a=\pm1\Leftrightarrow\sqrt{x}=1\left(x>0\right)\)
$A = \dfrac{2\sqrt x + 6 - 2}{\sqrt x+3} = 2 - \dfrac2{\sqrt x + 3}$.
Để $A$ nhận giá trị nguyên thì $\sqrt x + 3 \in$ Ư$(2)$.
Mà $\sqrt x \ge 0$ với mọi $x$ nên $\sqrt x + 3 \ge 3$ với mọi $x$
Nên không có giá trị nào của $x$ thỏa mãn.