K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
28 tháng 4 2021

\(=\dfrac{1}{2}sin6x-\dfrac{1}{2}sin2x-\left(\dfrac{1}{2}sin4x-\dfrac{1}{2}sin2x\right)\)

\(=\dfrac{1}{2}sin6x-\dfrac{1}{2}sin4x\)

\(=cos5x.sinx\)

11 tháng 5 2022

gt rõ hơn được không ạ, e k hiểu lắm ạ

6 tháng 5 2022

`A=[sin x + sin 2x + sin 3x]/[cos x + cos 2x + cos 3x]`

`A=[2sin2x.cosx+sin2x]/[2cos2x.cosx+cos2x]`

`A=[sin2x(2cosx+1)]/[cos2x(2cosx+1)]`

`A=tan 2x`

\(A=\dfrac{sinx-sin2x+sin3x}{cosx-cos2x+cos3x}\)

\(ĐK\left\{{}\begin{matrix}cos2x\ne0\\cosx\ne\dfrac{1}{2}\end{matrix}\right.\)  \(\Leftrightarrow\)  \(A=\dfrac{sinx+sin3x-sin2x}{cosx+cos3x-cos2x}\)     

\(\Leftrightarrow\)  \(\left\{{}\begin{matrix}=\dfrac{2sin2x.cosx-sin2x}{2cos2x.cosx-cos2x}\\=\dfrac{sin2x\left(2cosx-1\right)}{cos2x\left(2cosx-1\right)}\end{matrix}\right.\)  \(\Rightarrow\) \(A=tan2x\)

14 tháng 6 2020

\(D=\frac{sin4x+sin5x+sin6x}{cos4x+cos5x+cos6x}\)

\(=\frac{\left(sin4x+sin6x\right)+sin5x}{\left(cos4x+cos6x\right)+cos5x}\)

\(=\frac{2sin\frac{4x+6x}{2}.cos\frac{4x-6x}{2}+sin5x}{2cos\frac{4x+6x}{2}.cos\frac{4x-6x}{2}+cos5x}\)

\(=\frac{2sin5x.cos\left(-x\right)+sin5x}{2cos5x.cos\left(-x\right)+cos5x}=\frac{sin5x\left(2.cos\left(-x\right)+1\right)}{cos5x\left(2.cos\left(-x\right)+1\right)}=\frac{sin5x}{cos5x}=tan5x\)

8 tháng 1 2019

Đáp án: A

Ta có:

A = c o s 2 x + sin 2 x + sin 2 x 2 sin x + c o s x

Đề thi Học kì 2 Toán 10 có đáp án (Đề 2)

Đề thi Học kì 2 Toán 10 có đáp án (Đề 2)

Đề thi Học kì 2 Toán 10 có đáp án (Đề 2)

NV
3 tháng 6 2020

\(cos^2x-\left(2sin\frac{x}{2}cos\frac{x}{2}\right)^2=cos^2x-sin^2x=cos2x\)

\(\frac{sin3x}{sinx}-\frac{cos3x}{cosx}=\frac{sin3x.cosx-cos3x.sinx}{sinx.cosx}=\frac{sin\left(3x-x\right)}{\frac{1}{2}sin2x}=\frac{2sin2x}{sin2x}=2\)

\(\frac{cosx+cos3x+cos2x+cos4x}{sinx+sin3x+sin2x+sin4x}=\frac{2cosx.cos2x+2cosx.cos3x}{2sin2x.cosx+2sin3x.cosx}=\frac{2cosx\left(cos2x+cos3x\right)}{2cosx\left(sin2x+sin3x\right)}\)

\(=\frac{cos2x+cos3x}{sin2x+sin3x}=\frac{2cos\frac{x}{2}.cos\frac{5x}{2}}{2sin\frac{5x}{2}.cos\frac{x}{2}}=cot\frac{5x}{2}\)

9 tháng 8 2019

\(D=\frac{1+sin2x+cos2x}{1+sin2x-cos2x}=\frac{1+2sinxcosx+2cos^2x-1}{1+2sinxcosx-1+2sin^2x}\)

\(D=\frac{cosx\left(sinx+cosx\right)}{sinx\left(sinx+cosx\right)}=cotx\)

9 tháng 8 2019

\(F=\frac{sinx+sin4x+sin7x}{cosx+cos4x+cos7x}\)

\(F=\frac{2sin4xcos3x+sin4x}{2cos4xcos3x+cos4x}\)

\(F=\frac{2sin4x\left(cos3x+1\right)}{2cos4x\left(cos3x+1\right)}=tan4x\)

NV
12 tháng 5 2019

\(A=\frac{sinx+sin3x+sin2x}{cosx+cos3x+cos2x}=\frac{2sin2x.cosx+sin2x}{2cos2x.cosx+cos2x}=\frac{sin2x\left(2cosx+1\right)}{cos2x\left(2cosx+1\right)}=\frac{sin2x}{cos2x}=tan2x\)

NV
1 tháng 5 2021

\(A=\dfrac{sinx+sin3x+sin2x}{cosx+cos3x+cos2x}=\dfrac{2sin2x.cosx+sin2x}{2cos2x.cosx+cos2x}=\dfrac{sin2x\left(2cosx+1\right)}{cos2x\left(2cosx+1\right)}=tan2x\)

NV
20 tháng 5 2020

\(A=\frac{sin3x-sinx+cos2x}{cosx-cos3x+sin2x}=\frac{2cos2x.sinx+cos2x}{2sin2x.sinx+sin2x}=\frac{cos2x\left(2sinx+1\right)}{sin2x\left(2sinx+1\right)}=\frac{cos2x}{sin2x}=cot2x\)

AH
Akai Haruma
Giáo viên
28 tháng 10 2023

Lời giải:
$A=\cos 2x-2\sin 5x\sin x=\cos 2x-2.\frac{-1}{2}[\cos (5x+x)-\cos (5x-x)]$

$=\cos 2x+\cos 6x-\cos 4x$

$=(\cos 2x+\cos 6x)-\cos 4x$

$=2\cos \frac{2x+6x}{2}\cos \frac{6x-2x}{2}-\cos 4x$

$=2\cos 4x\cos 2x-\cos 4x$

$=\cos 4x[2\cos 2x-1]$

Những đáp án A,B,C,D bạn đưa ra không có đáp án nào đúng cả.

28 tháng 10 2023

Mình cảm ơn bạn nhiều ạ! Mình cũng làm ra như vậy mà biến đổi mãi không sao ra.