Tìm x,y nguyên thỏa mãn biểu thức :
2x - 3y = 1
Giải giúp mk vs nhak ( đừng ghi mỗi kết quả nhé ) mk k cho
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(P=\dfrac{x}{\sqrt{y}}+\dfrac{y}{\sqrt{x}}\Rightarrow P^2=\dfrac{x^2}{y}+\dfrac{y^2}{x}+2\sqrt{xy}\)
\(P^2=\left(\dfrac{x^2}{y}+\sqrt{xy}+\sqrt{xy}\right)+\left(\dfrac{y^2}{x}+\sqrt{xy}+\sqrt{xy}\right)-2\sqrt{xy}\)
\(P^2\ge3x+3y-2\sqrt{xy}\ge3\left(x+y\right)-\left(x+y\right)=2\left(x+y\right)=4038\)
\(\Rightarrow P\ge\sqrt{4038}\)
Dấu "=" xảy ra khi \(x=y=\dfrac{2019}{2}\)
Ta có:
\(P=\dfrac{x}{\sqrt{2019-x}}+\dfrac{y}{\sqrt{y-2019}}=\dfrac{x}{\sqrt{y}}+\dfrac{y}{\sqrt{x}}\ge\dfrac{\left(\sqrt{x}+\sqrt{y}\right)^2}{\sqrt{x}+\sqrt{y}}=\sqrt{x}+\sqrt{y}\)
Lại có:
\(P=\dfrac{x}{\sqrt{2019-x}}+\dfrac{y}{\sqrt{2019-y}}=\dfrac{2019-y}{\sqrt{y}}+\dfrac{2019-x}{\sqrt{x}}\\ =\dfrac{2019}{\sqrt{x}}+\dfrac{2019}{\sqrt{y}}-\sqrt{x}-\sqrt{y}\)
\(\Rightarrow2P=\dfrac{2019}{\sqrt{x}}+\dfrac{2019}{\sqrt{y}}=2019\left(\dfrac{1}{\sqrt{x}}+\dfrac{1}{\sqrt{y}}\right)\ge2019\cdot\dfrac{2}{\sqrt[4]{xy}}\\ \ge2019\dfrac{2}{\sqrt[2]{\dfrac{x+y}{2}}}=2019\cdot\dfrac{2}{\sqrt{\dfrac{2019}{2}}}=2\sqrt{2}\sqrt{2019}\)
\(\Rightarrow P\ge\sqrt{2}\sqrt{2019}\)
Dấu = khi \(x=y=\dfrac{2019}{2}\)
Giải
\(2x-5x+4xy=6\)
\(\Leftrightarrow x\left(2-5+4y\right)=6\)
\(\Leftrightarrow x\left(4y-3\right)=6\)
\(\Leftrightarrow x\inƯ\left(6\right)=\left\{\pm1;\pm2;\pm3;\pm6\right\}\)
Ta có bảng sau :
\(x\) | \(-6\) | \(-3\) | \(-2\) | \(-1\) | \(1\) | \(2\) | \(3\) | \(6\) |
\(4y-3\) | \(-1\) | \(-2\) | \(-3\) | \(-6\) | \(6\) | \(3\) | \(2\) | \(1\) |
\(y\) | \(0\) | \(1\) |
Vậy \(x,y\in\left\{\left(-2,0\right);\left(6,1\right)\right\}\)
a: \(A=\dfrac{x-1+2x^2+2x+2-x^2-2x}{\left(x-1\right)\left(x^2+x+1\right)}\)
\(=\dfrac{x^2+x+1}{\left(x-1\right)\left(x^2+x+1\right)}=\dfrac{1}{x-1}\)
Cho g(x) = 0
x + 1 = 0
x = -1
Để f(x) chia hết cho g(x) thì x = -1 cũng là nghiệm của f(x)
Hay f(1) = 0
3.1² + 2.1² - 7.1 - m + 2 = 0
-2 - m + 2 = 0
m = 0
Vậy m = 0 thì f(x) chia hết cho g(x)
Giải chi tiết của em đây :
F(x) = 3x2 + 2x2 - 7x - m + 2
F(x) \(⋮\) x + 1 \(\Leftrightarrow\) F(x) \(⋮\) x - (-1)
Theo bezout ta có : F(x) \(⋮\) x - (-1) \(\Leftrightarrow\) F(-1) = 0
\(\Leftrightarrow\) 3(-1)2 + 2(-1)2 - 7.(-1) - m + 2 = 0
3 + 2 + 7 - m + 2 =0
14 - m = 0
m = 14
Kết luận với m = 14 thì F(x) chia hết cho x + 1
coi như giải hệ pt
\(\hept{\begin{cases}y=x+1\left(1\right)\\y^2-3y\sqrt{x}+2x=0\left(2\right)\end{cases}}\)
\(\left(2\right)\Leftrightarrow\left(y^2-3\sqrt{x}.y+\frac{9x}{4}\right)=\frac{9x}{4}-2x=\frac{x}{2}\\ \)
\(\left(y-\frac{3\sqrt{x}}{2}\right)^2=\left(\frac{\sqrt{x}}{2}\right)^2\Rightarrow\orbr{\begin{cases}y=\frac{3\sqrt{x}}{2}-\frac{\sqrt{x}}{2}=\sqrt{x}\\y=\frac{3\sqrt{x}}{2}+\frac{\sqrt{x}}{2}=2\sqrt{x}\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}\sqrt{x}=x+1\left(3\right)\\2\sqrt{x}=x+1\left(4\right)\end{cases}}\)
\(\left(3\right)\Leftrightarrow\orbr{\begin{cases}\left(\sqrt{x}-\frac{1}{2}\right)^2=\frac{1}{4}-1\left(vonghiem\right)\\\left(\sqrt{x}-1\right)^2=0\Rightarrow\sqrt{x}=1\Rightarrow x=1\end{cases}}\)
Vậy chỉ có điểm x=1; y=2 thỏa mãn
<=> x(y+2)=y+5
=> x=\(\frac{y+5}{y+2}=\frac{y+2+3}{y+2}=1+\frac{3}{y+2}\)
=> để x nguyên thì 3 phải chia hết cho y+2.
=> +/ y+2=1 => y=-1 => x=1+3=4
+/ y+2=3 => y=1 => x=1+1=2
xy+2x-y=5
=> x(y+2) - y -2 = 5-2
=> x(y+2) - (y+2) = 5 - 2
=> (y+2)(x-1) = 3
do x, y thuộc Z => y+2 và x-1 thuộc Z
=> y+2 và x-1 thuộc Ư(3)={1,-1,-3,3}
chú ý: e là thuộc nhé
Vậy (x,y) e {(-2;-3);(4;-1);(0;-5);(2;1)}
chúc bạn học giỏi
chắc chắn 100% đó
tk nha