K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 12 2016

sao giống câu hỏi của mình thế chỉ khác số bạn biết làm ko chỉ mình đikhocroikhocroi

NV
6 tháng 4 2021

\(P=\dfrac{x}{\sqrt{y}}+\dfrac{y}{\sqrt{x}}\Rightarrow P^2=\dfrac{x^2}{y}+\dfrac{y^2}{x}+2\sqrt{xy}\)

\(P^2=\left(\dfrac{x^2}{y}+\sqrt{xy}+\sqrt{xy}\right)+\left(\dfrac{y^2}{x}+\sqrt{xy}+\sqrt{xy}\right)-2\sqrt{xy}\)

\(P^2\ge3x+3y-2\sqrt{xy}\ge3\left(x+y\right)-\left(x+y\right)=2\left(x+y\right)=4038\)

\(\Rightarrow P\ge\sqrt{4038}\)

Dấu "=" xảy ra khi \(x=y=\dfrac{2019}{2}\)

6 tháng 4 2021

Ta có:

\(P=\dfrac{x}{\sqrt{2019-x}}+\dfrac{y}{\sqrt{y-2019}}=\dfrac{x}{\sqrt{y}}+\dfrac{y}{\sqrt{x}}\ge\dfrac{\left(\sqrt{x}+\sqrt{y}\right)^2}{\sqrt{x}+\sqrt{y}}=\sqrt{x}+\sqrt{y}\)

Lại có:

\(P=\dfrac{x}{\sqrt{2019-x}}+\dfrac{y}{\sqrt{2019-y}}=\dfrac{2019-y}{\sqrt{y}}+\dfrac{2019-x}{\sqrt{x}}\\ =\dfrac{2019}{\sqrt{x}}+\dfrac{2019}{\sqrt{y}}-\sqrt{x}-\sqrt{y}\)

\(\Rightarrow2P=\dfrac{2019}{\sqrt{x}}+\dfrac{2019}{\sqrt{y}}=2019\left(\dfrac{1}{\sqrt{x}}+\dfrac{1}{\sqrt{y}}\right)\ge2019\cdot\dfrac{2}{\sqrt[4]{xy}}\\ \ge2019\dfrac{2}{\sqrt[2]{\dfrac{x+y}{2}}}=2019\cdot\dfrac{2}{\sqrt{\dfrac{2019}{2}}}=2\sqrt{2}\sqrt{2019}\)

\(\Rightarrow P\ge\sqrt{2}\sqrt{2019}\)

Dấu = khi \(x=y=\dfrac{2019}{2}\)

19 tháng 1 2019

                           Giải

\(2x-5x+4xy=6\)

\(\Leftrightarrow x\left(2-5+4y\right)=6\)

\(\Leftrightarrow x\left(4y-3\right)=6\)

\(\Leftrightarrow x\inƯ\left(6\right)=\left\{\pm1;\pm2;\pm3;\pm6\right\}\)

Ta có bảng sau :

\(x\)\(-6\)\(-3\)\(-2\)\(-1\)\(1\)\(2\)\(3\)\(6\)
\(4y-3\)\(-1\)\(-2\)\(-3\)\(-6\)\(6\)\(3\)\(2\)\(1\)
\(y\)  \(0\)    \(1\)

Vậy \(x,y\in\left\{\left(-2,0\right);\left(6,1\right)\right\}\)

16 tháng 12 2021

a: \(A=\dfrac{x-1+2x^2+2x+2-x^2-2x}{\left(x-1\right)\left(x^2+x+1\right)}\)

\(=\dfrac{x^2+x+1}{\left(x-1\right)\left(x^2+x+1\right)}=\dfrac{1}{x-1}\)

24 tháng 12 2022

Cho g(x) = 0

x + 1 = 0

x = -1

Để f(x) chia hết cho g(x) thì x = -1 cũng là nghiệm của f(x)

Hay f(1) = 0

3.1² + 2.1² - 7.1 - m + 2 = 0

-2 - m + 2 = 0

m = 0

Vậy m = 0 thì f(x) chia hết cho g(x)

24 tháng 12 2022

Giải chi tiết của em đây :

F(x) = 3x2 + 2x2 - 7x - m + 2 

F(x) \(⋮\) x + 1 \(\Leftrightarrow\) F(x) \(⋮\) x - (-1)

Theo bezout ta có : F(x) \(⋮\) x - (-1) \(\Leftrightarrow\) F(-1) = 0

\(\Leftrightarrow\) 3(-1)2 + 2(-1)2 - 7.(-1) - m + 2 = 0

    3 + 2 + 7 - m + 2 =0

              14 - m = 0

                     m = 14

Kết luận với m = 14 thì F(x) chia hết cho x + 1 

 

14 tháng 1 2017

coi như giải hệ pt

\(\hept{\begin{cases}y=x+1\left(1\right)\\y^2-3y\sqrt{x}+2x=0\left(2\right)\end{cases}}\)

\(\left(2\right)\Leftrightarrow\left(y^2-3\sqrt{x}.y+\frac{9x}{4}\right)=\frac{9x}{4}-2x=\frac{x}{2}\\ \)

\(\left(y-\frac{3\sqrt{x}}{2}\right)^2=\left(\frac{\sqrt{x}}{2}\right)^2\Rightarrow\orbr{\begin{cases}y=\frac{3\sqrt{x}}{2}-\frac{\sqrt{x}}{2}=\sqrt{x}\\y=\frac{3\sqrt{x}}{2}+\frac{\sqrt{x}}{2}=2\sqrt{x}\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}\sqrt{x}=x+1\left(3\right)\\2\sqrt{x}=x+1\left(4\right)\end{cases}}\)

\(\left(3\right)\Leftrightarrow\orbr{\begin{cases}\left(\sqrt{x}-\frac{1}{2}\right)^2=\frac{1}{4}-1\left(vonghiem\right)\\\left(\sqrt{x}-1\right)^2=0\Rightarrow\sqrt{x}=1\Rightarrow x=1\end{cases}}\)

Vậy chỉ có điểm x=1; y=2 thỏa mãn

23 tháng 12 2016

<=> x(y+2)=y+5

=> x=\(\frac{y+5}{y+2}=\frac{y+2+3}{y+2}=1+\frac{3}{y+2}\)

=> để x nguyên thì 3 phải chia hết cho y+2.

=> +/ y+2=1 => y=-1 => x=1+3=4

     +/ y+2=3 => y=1 => x=1+1=2

xy+2x-y=5

=> x(y+2) - y -2 = 5-2

=> x(y+2) - (y+2) = 5 - 2

=> (y+2)(x-1) = 3

do x, y thuộc Z => y+2 và x-1 thuộc Z

=> y+2 và x-1 thuộc Ư(3)={1,-1,-3,3}

LẬP BẢNG y + 2 x - 1 x y -1 1 -3 3 -3 3 -1 1 -2eZ 4eZ 0eZ 2e Z -3eZ -1eZ -5eZ 1eZ

chú ý: e là thuộc nhé

Vậy (x,y) e {(-2;-3);(4;-1);(0;-5);(2;1)}

chúc bạn học giỏi

chắc chắn 100% đó

tk nha