K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 2 2017

a. Vì \(\frac{x}{y}=\frac{-3}{11}\)

=> x = -3

     y = 11

AH
Akai Haruma
Giáo viên
18 tháng 12 2021

Lời giải:
a. Vì $x,y$ thuộc $Z$ nên $x-3, y+5\in\mathbb{Z}$. Tích của chúng $=11$ nên ta có bảng sau:

x-3111-1-11
y+5111-11-1
x4142-8
y6-4-16-6

b. Vì $x,y\in\mathbb{Z}$ nên $2x+1, 6-y\in\mathbb{Z}$.

Với $x$ nguyên thì $2x+1$ là số nguyên lẻ nên ta có bảng sau:

2x+11-13-3
6-y12-124-4
x0-11-2
y-618210

 

 

12 tháng 2 2016

Bài 1:

<=>7[3(-x)]-12(x-5)=-3(11x-20)

=>-3(11x-20)=5

=>-33x=-55

=>-11.3x=-11.5 (rút gọn -11)

=>3x=5

\(\Rightarrow x=\frac{5}{3}\)

Đã duyệt

12 tháng 2 2016

bài 1:

<=>7[3(-x)]-12(x-5)=-3(11x-20)

=>-3(11x-20)=5

=>-33x=-55

=>-11.3x=-11.5 (rút gọn -11)

=>3x=5

=>x=\(\frac{5}{3}\)

AH
Akai Haruma
Giáo viên
18 tháng 6 2021

Lời giải:
a.

Áp dụng tính chất dãy tỉ số bằng nhau:

\(\frac{x}{2}=\frac{y}{\frac{3}{2}}=\frac{z}{\frac{4}{3}}=\frac{x-y}{2-\frac{3}{2}}=\frac{15}{\frac{1}{2}}=30\)

\(\Rightarrow \left\{\begin{matrix} x=60\\ y=45\\ z=40\end{matrix}\right.\)

b)

Từ đkđb suy ra \(\frac{10x}{1}=\frac{5y}{\frac{1}{3}}=\frac{z}{\frac{1}{6}}=\frac{10x-5y+z}{1-\frac{1}{3}+\frac{1}{6}}=\frac{25}{\frac{5}{6}}=30\)

\(\Rightarrow \left\{\begin{matrix} x=3\\ y=2\\ z=5\end{matrix}\right.\)

 

12 tháng 2 2016

bai toan nay kho

29 tháng 4 2016

mk...

                                                              ... ko bít

10 tháng 3 2020

2) Ta có: \(\left(2x+1\right).\left(3y-2\right)=-55=\left(-1\right).55=1.\left(-55\right)=\left(-5\right).11=5.\left(-11\right)\)

- Ta có bảng giá trị: 

\(2x+1\)\(-55\)\(-11\)\(-5\) \(-1\)\(1\)      \(5\)     \(11\)   \(55\)  
\(3y-2\)\(1\)\(5\)\(11\)\(55\)\(-55\)\(-11\)\(-5\)\(-1\)
\(x\)\(-28\)\(-6\)\(-3\)\(-1\)\(0\)\(2\)\(5\)\(27\)
\(y\)\(1\)\(\frac{7}{3}\)\(\frac{13}{3}\)\(19\)\(-\frac{53}{3}\)\(-3\)\(-1\)\(\frac{1}{3}\)
 \(\left(TM\right)\)\(\left(L\right)\)\(\left(L\right)\)\(\left(TM\right)\)\(\left(L\right)\)\(\left(TM\right)\)\(\left(TM\right)\)\(\left(L\right)\)

Vậy \(\left(x,y\right)\in\left\{\left(-28,1\right);\left(-1,19\right);\left(2,-3\right);\left(5,-1\right)\right\}\)

3) Ta có: \(\left(x-2\right).\left(y+3\right)=5=\left(-1\right).\left(-5\right)=1.5\)

- Ta có bảng giá trị:

\(x-2\)\(-1\)\(1\)   \(-5\)\(5\)   
\(y+3\)\(-5\)\(5\)\(-1\)\(1\)
\(x\)\(1\)\(3\)\(-3\)\(7\)
\(y\)\(-8\)\(2\)\(-4\)\(-2\)
 \(\left(TM\right)\)\(\left(TM\right)\)\(\left(TM\right)\)\(\left(TM\right)\)

Vậy \(\left(x,y\right)\in\left\{\left(1,-8\right);\left(3,2\right);\left(-3,-4\right);\left(7,-2\right)\right\}\)

4) Ta có: \(\left(2x+3\right).\left(y-5\right)=10=\left(-1\right).\left(-10\right)=1.10=\left(-2\right).\left(-5\right)=2.5\)

- Vì \(x\in Z\)mà \(2x+3\)là số lẻ \(\Rightarrow\)\(2x+3\in\left\{-1,1,-5,5\right\}\)

- Ta có bảng giá trị:

\(2x+3\)\(-1\)  \(1\)     \(-5\) \(5\)     
\(y-5\)\(-10\)\(11\)\(-2\)\(2\)
\(x\)\(-2\)\(-1\)\(-4\)\(1\)
\(y\)\(-5\)\(16\)\(3\)\(7\)
 \(\left(TM\right)\)\(\left(TM\right)\)\(\left(TM\right)\)\(\left(TM\right)\)

Vậy \(\left(x,y\right)\in\left\{\left(-2,-5\right);\left(-1,16\right);\left(-4,3\right);\left(1,7\right)\right\}\)

4 tháng 2 2016

a) 4 cặp

b) -10

1: \(\dfrac{x-1}{3}=\dfrac{y-2}{4}=\dfrac{z+7}{5}\)

mà x+y-z=8

nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{x-1}{3}=\dfrac{y-2}{4}=\dfrac{z+7}{5}=\dfrac{x-1+y-2-z-7}{3+4-5}=\dfrac{8-3-7}{2}=\dfrac{-2}{2}=-1\)

=>\(\left\{{}\begin{matrix}x-1=-1\cdot3=-3\\y-2=-1\cdot4=-4\\z+7=-1\cdot5=-5\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x=-2\\y=-2\\z=-12\end{matrix}\right.\)

2: \(\dfrac{x+1}{3}=\dfrac{y+2}{-4}=\dfrac{z-3}{5}\)

mà 3x+2y=47-42=5

nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{x+1}{3}=\dfrac{y+2}{-4}=\dfrac{z-3}{5}=\dfrac{3x+3+2y+4}{3\cdot3+2\left(-4\right)}=\dfrac{5+7}{9-8}=12\)

=>\(\left\{{}\begin{matrix}x+1=12\cdot3=36\\y+2=-12\cdot4=-48\\z-3=12\cdot5=60\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x=35\\y=-48-2=-50\\z=60+3=63\end{matrix}\right.\)

14 tháng 7 2019

Ta có: \(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}\) => \(\frac{x^2}{4}=\frac{y^2}{9}=\frac{2z^2}{32}\)

Áp dụng t/c của dãy tỉ số bằng nhau, ta có:

   \(\frac{x^2}{4}=\frac{y^2}{9}=\frac{2z^2}{32}=\frac{x^2+y^2-2z^2}{4+9-32}=\frac{76}{-19}=-4\)

=> \(\hept{\begin{cases}\frac{x^2}{4}=-4\\\frac{y^2}{9}=-4\\\frac{2z^2}{32}=-4\end{cases}}\) => \(\hept{\begin{cases}x^2=-4.4=-16\\y^2=-4.9=-36\\z^2=\left(-4.32\right):2=-64\end{cases}}\) => ko có giá trị x,y,z thõa mãn

Ta có: \(-2x=5y\) => \(\frac{x}{5}=\frac{y}{-2}\)

Áp dụng t/c của dãy tỉ số bằng nhau, ta có:

        \(\frac{x}{5}=\frac{y}{-2}=\frac{x+y}{5-2}=\frac{30}{3}=10\)

=> \(\hept{\begin{cases}\frac{x}{5}=10\\\frac{y}{-2}=10\end{cases}}\) => \(\hept{\begin{cases}x=10.5=50\\y=10.\left(-2\right)=-20\end{cases}}\)

Vậy ..

14 tháng 7 2019

\(\frac{x}{-3}=\frac{y}{-7}\Rightarrow\frac{2x}{-6}=\frac{4y}{-28}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có :

\(\frac{2x}{-6}=\frac{4y}{-28}=\frac{2x+4y}{(-6)+(-28)}=\frac{68}{-34}=-2\)

Vậy : \(\hept{\begin{cases}\frac{x}{-3}=-2\\\frac{y}{-7}=-2\end{cases}}\Leftrightarrow\hept{\begin{cases}x=6\\y=14\end{cases}}\)