Tìm x,y thuộc Z biết:
a x/y=-3/11
b x/y-1=5/-19
Ai nhanh nhất giải đàng hoàng 3 like giúp mình nhé
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
a. Vì $x,y$ thuộc $Z$ nên $x-3, y+5\in\mathbb{Z}$. Tích của chúng $=11$ nên ta có bảng sau:
x-3 | 1 | 11 | -1 | -11 |
y+5 | 11 | 1 | -11 | -1 |
x | 4 | 14 | 2 | -8 |
y | 6 | -4 | -16 | -6 |
b. Vì $x,y\in\mathbb{Z}$ nên $2x+1, 6-y\in\mathbb{Z}$.
Với $x$ nguyên thì $2x+1$ là số nguyên lẻ nên ta có bảng sau:
2x+1 | 1 | -1 | 3 | -3 |
6-y | 12 | -12 | 4 | -4 |
x | 0 | -1 | 1 | -2 |
y | -6 | 18 | 2 | 10 |
Bài 1:
<=>7[3(-x)]-12(x-5)=-3(11x-20)
=>-3(11x-20)=5
=>-33x=-55
=>-11.3x=-11.5 (rút gọn -11)
=>3x=5
\(\Rightarrow x=\frac{5}{3}\)
Đã duyệt
bài 1:
<=>7[3(-x)]-12(x-5)=-3(11x-20)
=>-3(11x-20)=5
=>-33x=-55
=>-11.3x=-11.5 (rút gọn -11)
=>3x=5
=>x=\(\frac{5}{3}\)
Lời giải:
a.
Áp dụng tính chất dãy tỉ số bằng nhau:
\(\frac{x}{2}=\frac{y}{\frac{3}{2}}=\frac{z}{\frac{4}{3}}=\frac{x-y}{2-\frac{3}{2}}=\frac{15}{\frac{1}{2}}=30\)
\(\Rightarrow \left\{\begin{matrix} x=60\\ y=45\\ z=40\end{matrix}\right.\)
b)
Từ đkđb suy ra \(\frac{10x}{1}=\frac{5y}{\frac{1}{3}}=\frac{z}{\frac{1}{6}}=\frac{10x-5y+z}{1-\frac{1}{3}+\frac{1}{6}}=\frac{25}{\frac{5}{6}}=30\)
\(\Rightarrow \left\{\begin{matrix} x=3\\ y=2\\ z=5\end{matrix}\right.\)
2) Ta có: \(\left(2x+1\right).\left(3y-2\right)=-55=\left(-1\right).55=1.\left(-55\right)=\left(-5\right).11=5.\left(-11\right)\)
- Ta có bảng giá trị:
\(2x+1\) | \(-55\) | \(-11\) | \(-5\) | \(-1\) | \(1\) | \(5\) | \(11\) | \(55\) |
\(3y-2\) | \(1\) | \(5\) | \(11\) | \(55\) | \(-55\) | \(-11\) | \(-5\) | \(-1\) |
\(x\) | \(-28\) | \(-6\) | \(-3\) | \(-1\) | \(0\) | \(2\) | \(5\) | \(27\) |
\(y\) | \(1\) | \(\frac{7}{3}\) | \(\frac{13}{3}\) | \(19\) | \(-\frac{53}{3}\) | \(-3\) | \(-1\) | \(\frac{1}{3}\) |
\(\left(TM\right)\) | \(\left(L\right)\) | \(\left(L\right)\) | \(\left(TM\right)\) | \(\left(L\right)\) | \(\left(TM\right)\) | \(\left(TM\right)\) | \(\left(L\right)\) |
Vậy \(\left(x,y\right)\in\left\{\left(-28,1\right);\left(-1,19\right);\left(2,-3\right);\left(5,-1\right)\right\}\)
3) Ta có: \(\left(x-2\right).\left(y+3\right)=5=\left(-1\right).\left(-5\right)=1.5\)
- Ta có bảng giá trị:
\(x-2\) | \(-1\) | \(1\) | \(-5\) | \(5\) |
\(y+3\) | \(-5\) | \(5\) | \(-1\) | \(1\) |
\(x\) | \(1\) | \(3\) | \(-3\) | \(7\) |
\(y\) | \(-8\) | \(2\) | \(-4\) | \(-2\) |
\(\left(TM\right)\) | \(\left(TM\right)\) | \(\left(TM\right)\) | \(\left(TM\right)\) |
Vậy \(\left(x,y\right)\in\left\{\left(1,-8\right);\left(3,2\right);\left(-3,-4\right);\left(7,-2\right)\right\}\)
4) Ta có: \(\left(2x+3\right).\left(y-5\right)=10=\left(-1\right).\left(-10\right)=1.10=\left(-2\right).\left(-5\right)=2.5\)
- Vì \(x\in Z\)mà \(2x+3\)là số lẻ \(\Rightarrow\)\(2x+3\in\left\{-1,1,-5,5\right\}\)
- Ta có bảng giá trị:
\(2x+3\) | \(-1\) | \(1\) | \(-5\) | \(5\) |
\(y-5\) | \(-10\) | \(11\) | \(-2\) | \(2\) |
\(x\) | \(-2\) | \(-1\) | \(-4\) | \(1\) |
\(y\) | \(-5\) | \(16\) | \(3\) | \(7\) |
\(\left(TM\right)\) | \(\left(TM\right)\) | \(\left(TM\right)\) | \(\left(TM\right)\) |
Vậy \(\left(x,y\right)\in\left\{\left(-2,-5\right);\left(-1,16\right);\left(-4,3\right);\left(1,7\right)\right\}\)
1: \(\dfrac{x-1}{3}=\dfrac{y-2}{4}=\dfrac{z+7}{5}\)
mà x+y-z=8
nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x-1}{3}=\dfrac{y-2}{4}=\dfrac{z+7}{5}=\dfrac{x-1+y-2-z-7}{3+4-5}=\dfrac{8-3-7}{2}=\dfrac{-2}{2}=-1\)
=>\(\left\{{}\begin{matrix}x-1=-1\cdot3=-3\\y-2=-1\cdot4=-4\\z+7=-1\cdot5=-5\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x=-2\\y=-2\\z=-12\end{matrix}\right.\)
2: \(\dfrac{x+1}{3}=\dfrac{y+2}{-4}=\dfrac{z-3}{5}\)
mà 3x+2y=47-42=5
nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x+1}{3}=\dfrac{y+2}{-4}=\dfrac{z-3}{5}=\dfrac{3x+3+2y+4}{3\cdot3+2\left(-4\right)}=\dfrac{5+7}{9-8}=12\)
=>\(\left\{{}\begin{matrix}x+1=12\cdot3=36\\y+2=-12\cdot4=-48\\z-3=12\cdot5=60\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x=35\\y=-48-2=-50\\z=60+3=63\end{matrix}\right.\)
Ta có: \(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}\) => \(\frac{x^2}{4}=\frac{y^2}{9}=\frac{2z^2}{32}\)
Áp dụng t/c của dãy tỉ số bằng nhau, ta có:
\(\frac{x^2}{4}=\frac{y^2}{9}=\frac{2z^2}{32}=\frac{x^2+y^2-2z^2}{4+9-32}=\frac{76}{-19}=-4\)
=> \(\hept{\begin{cases}\frac{x^2}{4}=-4\\\frac{y^2}{9}=-4\\\frac{2z^2}{32}=-4\end{cases}}\) => \(\hept{\begin{cases}x^2=-4.4=-16\\y^2=-4.9=-36\\z^2=\left(-4.32\right):2=-64\end{cases}}\) => ko có giá trị x,y,z thõa mãn
Ta có: \(-2x=5y\) => \(\frac{x}{5}=\frac{y}{-2}\)
Áp dụng t/c của dãy tỉ số bằng nhau, ta có:
\(\frac{x}{5}=\frac{y}{-2}=\frac{x+y}{5-2}=\frac{30}{3}=10\)
=> \(\hept{\begin{cases}\frac{x}{5}=10\\\frac{y}{-2}=10\end{cases}}\) => \(\hept{\begin{cases}x=10.5=50\\y=10.\left(-2\right)=-20\end{cases}}\)
Vậy ..
\(\frac{x}{-3}=\frac{y}{-7}\Rightarrow\frac{2x}{-6}=\frac{4y}{-28}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{2x}{-6}=\frac{4y}{-28}=\frac{2x+4y}{(-6)+(-28)}=\frac{68}{-34}=-2\)
Vậy : \(\hept{\begin{cases}\frac{x}{-3}=-2\\\frac{y}{-7}=-2\end{cases}}\Leftrightarrow\hept{\begin{cases}x=6\\y=14\end{cases}}\)
a. Vì \(\frac{x}{y}=\frac{-3}{11}\)
=> x = -3
y = 11