Cho hàm số y=f(x)=x^3-2x^2 Tìm f'(x)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: TXĐ: \(D=R\backslash\left\{-\dfrac{1}{2}\right\}\)
b: TXĐ: \(D=R\backslash\left\{-3;1\right\}\)
c: TXĐ: \(D=\left[-\dfrac{1}{2};3\right]\)
Câu 1:
a)
\(y=f\left(x\right)=2x^2\) | -5 | -3 | 0 | 3 | 5 |
f(x) | 50 | 18 | 0 | 18 | 50 |
b) Ta có: f(x)=8
\(\Leftrightarrow2x^2=8\)
\(\Leftrightarrow x^2=4\)
hay \(x\in\left\{2;-2\right\}\)
Vậy: Để f(x)=8 thì \(x\in\left\{2;-2\right\}\)
Ta có: \(f\left(x\right)=6-4\sqrt{2}\)
\(\Leftrightarrow2x^2=6-4\sqrt{2}\)
\(\Leftrightarrow x^2=3-2\sqrt{2}\)
\(\Leftrightarrow x=\sqrt{3-2\sqrt{2}}\)
hay \(x=\sqrt{2}-1\)
Vậy: Để \(f\left(x\right)=6-4\sqrt{2}\) thì \(x=\sqrt{2}-1\)
Bài 1:
a: f(0)=1
f(2)=-3x2+1=-6+1=-5
f(-2)=-3x2+1=-5
f(-1/2)=-3x1/2+1=-3/2+1=-1/2
b: f(x)=-3
=>-3|x|+1=-3
=>-3|x|=-4
=>|x|=4/3
=>x=4/3 hoặc x=-4/3
a) Thay x=-2 vào hàm số \(f\left(x\right)=2x^2-5\),ta được:
\(f\left(-2\right)=2\cdot\left(-2\right)^2-5=2\cdot4-5=8-5=3\)
Thay x=1 vào hàm số \(f\left(x\right)=2x^2-5\), ta được:
\(f\left(1\right)=2\cdot1^2-5=2-5=-3\)
Thay x=3 vào hàm số \(f\left(x\right)=2x^2-5\), ta được:
\(f\left(3\right)=2\cdot3^2-5=2\cdot9-5=18-5=13\)
Vậy: f(-2)=3
f(1)=-3
f(3)=13
b) Để f(x)=3 thì \(2x^2-5=3\)
\(\Leftrightarrow2x^2=8\)
\(\Leftrightarrow x^2=4\)
hay \(x\in\left\{2;-2\right\}\)
Vậy: Để f(x)=3 thì \(x\in\left\{2;-2\right\}\)
a) Cho hàm số y = f(x) = -2x + 3.
Ta có: f(-2)= -2.(-2)+3
= 4+3=7
Ta có: f(0)= -2.0+3
= 0+3=3
Ta có: f(\(\dfrac{-1}{2}\))= -2.(-\(\dfrac{1}{2}\))+3
=\(\dfrac{-2.\left(-1\right)}{2}\)+3
=\(\dfrac{2}{2}\)+3
= 1+3= 4
Vậy f(-2)=7;f(0)=3;f( \(\dfrac{-1}{2}\))=4
b) Cho hàm số y = f(x) = -2x + 3
mà f(x)=5
Suy ra: f(x) = -2x + 3=5
hay -2x + 3=5
-2x=5-3
-2x=2
x=2:(-2)
x= -1
Cho hàm số y = f(x) = -2x + 3
mà f(x)=1
Suy ra: f(x) = -2x + 3=1
hay -2x + 3=1
-2x=1-3
-2x= -2
x= -2:(-2)
x=1
Vậy f(x)=5 thì x= -1 và f(x) = 1 thì x=1.
Lời giải:
a.
$f(-2)=(-2)(-2)+3=7$
$f(0)=(-2).0+3=3$
$f(\frac{-1}{2})=(-2).\frac{-1}{2}+3=4$
b.
$f(x)=-2x+3=5$
$\Rightarrow -2x=2$
$\Rightarrow x=-1$
$f(x)=-2x+3=1$
$\Rightarrow -2x=1-3=-2$
$\Rightarrow x=1$
\(f'\left(x\right)=3x^2-4x\)
f'(x) = \(3x^2-4x\)