\(\text{Tìm giá trị nhỏ nhất của:}\)
\(1.P=x^2+y^2\)
\(2.A=|x+1|^{11}+10\)
\(3.B=x^2+9x+6\)
\(\text{Tìm giá trị của x để phân thức }\frac{2015x^3}{x-7}\)\(\text{không xác định}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A= x^2-6x+10
A=x^2-3x-3x+9+1
A=x(x-3)-3(x-3)+1
A=(x-3)(x-3)+1
A=(x-3)^2+1
Vì (x-3)^2 \(\ge\)0\(\forall x\)
->(x-3)^2+1\(\ge\)1
=>ĐPCM
1. a) \(A=x\left(x-6\right)+10=x^2-6x+9+1=\left(x-3\right)^2+1\)
Vì \(\left(x-3\right)^2\ge0\forall x\)\(\Rightarrow\left(x-3\right)^2+1\ge1\)
hay \(A\ge1\)\(\Rightarrow\)A luôn dương ( đpcm )
b) \(B=x^2-2x+9y^2-6y+3=\left(x^2-2x+1\right)+\left(9y^2-6y+1\right)+1\)
\(=\left(x-1\right)^2+\left(3y-1\right)^2+1\)
Vì \(\hept{\begin{cases}\left(x-1\right)^2\ge0\forall x\\\left(3y-1\right)^2\ge0\forall y\end{cases}}\)
\(\Rightarrow\left(x-1\right)^2+\left(3y-1\right)^2\ge0\forall x,y\)
\(\Rightarrow\left(x-1\right)^2+\left(3y-1\right)^2+1\ge1\forall x,y\)
hay \(B\ge1\)\(\Rightarrow\)B luôn dương ( đpcm )
\(A=\left[\frac{x^2}{x^3-4x}+\frac{6}{6-3x}+\frac{1}{x+2}\right]:\left[x-2+\frac{10-x^2}{x+2}\right]\) ĐKXĐ : \(x\ne0;x\ne\pm2\)
\(A=\left[\frac{x^2}{x\left(x+2\right)\left(x-2\right)}-\frac{6}{3\left(x-2\right)}+\frac{1}{x+2}\right]:\left[\frac{x^2-4}{x+2}+\frac{10-x^2}{x+2}\right]\)
\(A=\left[\frac{3x^2}{3x\left(x+2\right)\left(x-2\right)}-\frac{6x\left(x+2\right)}{3x\left(x+2\right)\left(x-2\right)}+\frac{3x\left(x+2\right)}{3x\left(x+2\right)\left(x-2\right)}\right]:\frac{6}{x+2}\)
\(A=\left[\frac{3x^2-6x^2-12x+3x^2+6x}{3x\left(x+2\right)\left(x-2\right)}\right].\frac{x+2}{6}\)
\(A=\frac{-x}{3x\left(x-2\right)}\)
\(A=\frac{-1}{3x-6}\)
1.a)\(\frac{x^3}{x^2-4}-\frac{x}{x-2}-\frac{2}{x+2}\)
\(=\frac{x^3}{\left(x+2\right)\left(x-2\right)}-\frac{x}{x-2}-\frac{2}{x+2}\)
Để biểu thức được xác định thì:\(\left(x+2\right)\left(x-2\right)\ne0\)\(\Rightarrow x\ne\pm2\)
\(\left(x+2\right)\ne0\Rightarrow x\ne-2\)
\(\left(x-2\right)\ne0\Rightarrow x\ne2\)
Vậy để biểu thức xác định thì : \(x\ne\pm2\)
b) để C=0 thì ....
1, c , bn Nguyễn Hữu Triết chưa lm xong
ta có : \(/x-5/=2\)
\(\Rightarrow\orbr{\begin{cases}x-5=2\\x-5=-2\end{cases}}\Rightarrow\orbr{\begin{cases}x=7\\x=3\end{cases}}\)
thay x = 7 vào biểu thứcC
\(\Rightarrow C=\frac{4.7^2\left(2-7\right)}{\left(7-3\right)\left(2+7\right)}=\frac{-988}{36}=\frac{-247}{9}\)KL :>...
thay x = 3 vào C
\(\Rightarrow C=\frac{4.3^2\left(2-3\right)}{\left(3-3\right)\left(3+7\right)}\)
=> ko tìm đc giá trị C tại x = 3
Ta có \(\sqrt{x+2}-y^3=\sqrt{y+2}-x^3\)
\(\Leftrightarrow\sqrt{x+2}+x^3=\sqrt{y+2}+y^3\)
Đặt \(f\left(x\right)=\sqrt{x+2}+x^3\). Ta chứng minh \(f\left(x\right)\) là hàm số đồng biến với \(x\ge-2\)
Giả sử \(f\left(a\right)>f\left(b\right)\) với \(a,b\ge-2\)
\(\Rightarrow\sqrt{a+2}+a^3>\sqrt{b+2}+b^3\)
\(\Leftrightarrow\sqrt{a+2}-\sqrt{b+2}+a^3-b^3>0\)
\(\Leftrightarrow\dfrac{a-b}{\sqrt{a+2}+\sqrt{b+2}}+\left(a-b\right)\left(a^2+ab+b^2\right)>0\)
\(\Leftrightarrow\left(a-b\right)\left(\dfrac{1}{\sqrt{a+2}+\sqrt{b+2}}+a^2-ab+b^2\right)>0\) (*)
Dễ thấy \(\dfrac{1}{\sqrt{a+2}+\sqrt{b+2}}+a^2+ab+b^2>0\) với mọi \(a,b\ge-2\)
Do đó từ (*) suy ra \(a>b\).
Vậy ta có \(f\left(a\right)>f\left(b\right)\Rightarrow a>b\). Do đó \(f\) là hàm số đồng biến.
Theo trên, ta có \(f\left(x\right)=f\left(y\right)\Rightarrow x=y\)
Thay vào biểu thức B, ta có \(B=x^2+2x+10\)
\(B=\left(x+1\right)^2+9\) \(\ge9\).
Dấu "=" xảy ra \(\Leftrightarrow x=-1\) (nhận) \(\Rightarrow y=-1\)
Vậy GTNN của B là 9, xảy ra khi \(\left(x;y\right)=\left(-1;-1\right)\)
Bài 1 và 2 dễ rồi bạn tự làm được
Bài 3 :
\(a)\) Ta có :
\(\left|2x+3\right|\ge0\)
Mà \(\left|2x+3\right|=x+2\)
\(\Rightarrow\)\(x+2\ge0\)
\(\Rightarrow\)\(x\ge-2\)
Trường hợp 1 :
\(2x+3=x+2\)
\(\Leftrightarrow\)\(2x-x=2-3\)
\(\Leftrightarrow\)\(x=-1\) ( thoã mãn )
Trường hợp 2 :
\(2x+3=-x-2\)
\(\Leftrightarrow\)\(2x+x=-2-3\)
\(\Leftrightarrow\)\(3x=-5\)
\(\Leftrightarrow\)\(x=\frac{-5}{3}\) ( thoã mãn )
Vậy \(x=-1\) hoặc \(x=\frac{-5}{3}\)
Chúc bạn học tốt ~
Ta có : \(\frac{3x^2-8x+6}{x^2-2x+1}=\frac{2x^2-4x+2-4x+x^2+4}{\left(x-1\right)^2}\)\(=\frac{2\left(x-1\right)^2+\left(x-1\right)^2}{\left(x-1\right)^2}\ge0\)
Rút gọn hết ta được 2\(\ge0\)vậy GTNN của E=2 \(\Leftrightarrow\)x-1=0\(\Leftrightarrow\)x=1
Ta có \(E=\frac{3x^2-8x+6}{x^2-2x+1}=\frac{3\left(x^2-2x+1\right)-2\left(x-1\right)+1}{\left(x-1\right)^2}=3-\frac{2}{x-1}+\frac{1}{\left(x-1\right)^2}\)
Đặt \(t=\frac{1}{x-1}\Rightarrow E=t^2-2t+3=\left(t-1\right)^2+2\ge2\)
Vậy min E = 2 khi t = 1 hay \(\frac{1}{x-1}=1\Rightarrow x=2.\)
1) Ta có :
\(x^2\ge0\forall x,y^2\ge0\forall y\)
\(\Rightarrow x^2+y^2\ge0\forall x,y\)
Ta lại có
\(x^2+y^2\ge2xy\)
Để 2xy đạt giá trị nhỏ nhất thì xy đạt giá trị nhỏ nhất
Nhưng cả x lẫn y nhất định phải cx dấu ko đk khác dấu
Dấu "=" xảy ra khi và chỉ khi x = y 0
Vậy GTNN của x2 + y2 là 0 khi và chỉ khi x = y = 0
Bài 2:
Ta thấy: \(\left|x+1\right|^{11}\ge0\)
\(\Rightarrow\left|x+1\right|^{11}+10\ge10\)
\(\Rightarrow A\ge10\)
Dấu "=" xảy ra khi \(x=-1\)
Vậy...
Bài 3:
\(B=x^2+9x+6=x^2+9x+\frac{81}{4}-\frac{57}{4}\)
\(=\left(x^2+9x+\frac{81}{4}\right)-\frac{57}{4}\)
\(=\left(x+\frac{9}{2}\right)^2-\frac{57}{4}\ge\frac{57}{4}\)
Dấu "=" xảy ra khi \(x=-\frac{9}{2}\)
Bài 4: phân thức trên ko xác định khi mẫu bằng 0
Tức là \(x-7=0\Rightarrow x=7\)
P/s:Mấy bài này cx ko khó lắm bn tự làm sẽ thông minh hơn