1/3m=?m
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có:
\(\frac{1}{2\left(m+1\right)}+\frac{1}{2\left(m+1\right)\left(3m+2\right)}+\frac{1}{2\left(3m+2\right)\left(8m+5\right)}\)
\(=\frac{3m+2}{2\left(m+1\right)\left(3m+2\right)}+\frac{1}{2\left(m+1\right)\left(3m+2\right)}\)
\(+\frac{1}{2\left(3m+2\right)\left(8m+5\right)}\)
\(=\frac{3m+3}{2\left(m+1\right)\left(3m+2\right)}+\frac{1}{2\left(3m+2\right)\left(8m+5\right)}\)
\(=\frac{3\left(m+1\right)}{2\left(m+1\right)\left(3m+2\right)}+\frac{1}{2\left(3m+2\right)\left(8m+5\right)}\)
\(=\frac{3}{2\left(3m+2\right)}+\frac{1}{2\left(3m+2\right)\left(8m+5\right)}\)
\(=\frac{3\left(8m+5\right)}{2\left(3m+2\right)\left(8m+5\right)}+\frac{1}{2\left(3m+2\right)\left(8m+5\right)}\)
\(=\frac{24m+15}{2\left(3m+2\right)\left(8m+5\right)}+\frac{1}{2\left(3m+2\right)\left(8m+5\right)}\)
\(=\frac{24m+16}{2\left(3m+2\right)\left(8m+5\right)}\)
\(=\frac{8\left(3m+2\right)}{2\left(3m+2\right)\left(8m+5\right)}\)
\(=\frac{8}{2\left(8m+5\right)}=\frac{4}{8m+5}\left(đpcm\right)\)
b) Ta có: \(\frac{1}{m+1}+\frac{1}{3m+2}+\frac{1}{\left(m+1\right)\left(3m+2\right)}\)
\(=\frac{3m+2}{\left(m+1\right)\left(3m+2\right)}+\frac{m+1}{\left(m+1\right)\left(3m+2\right)}\)
\(+\frac{1}{\left(m+1\right)\left(3m+2\right)}\)
\(=\frac{4m+4}{\left(m+1\right)\left(3m+2\right)}\)
\(=\frac{4\left(m+1\right)}{\left(m+1\right)\left(3m+2\right)}\)
\(=\frac{4}{3m+2}\left(đpcm\right)\)
a.
- Với \(m=-1\) BPT có nghiệm (đúng với mọi x)
- Với \(m\ne-1\) BPT có nghiệm khi:
\(\left[{}\begin{matrix}m+1< 0\\\left\{{}\begin{matrix}m+1>0\\\Delta'=\left(m+1\right)^2-\left(m+1\right)\left(3m-3\right)>0\end{matrix}\right.\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}m< -1\\\left\{{}\begin{matrix}m>-1\\\left(m+1\right)\left(4-2m\right)>0\end{matrix}\right.\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}m< -1\\\left\{{}\begin{matrix}m>-1\\-1< m< 2\end{matrix}\right.\end{matrix}\right.\)
Kết hợp lại ta được: \(m< 2\)
b.
Do \(a=1>0\) nên BPT có nghiệm với mọi m
c.
- Với \(m=1\) BPT có nghiệm
- Với \(m\ne1\) BPT có nghiệm khi:
\(\left[{}\begin{matrix}m-1< 0\\\left\{{}\begin{matrix}m-1>0\\\Delta'=\left(m+1\right)^2-\left(m-1\right)\left(3m-6\right)\ge0\end{matrix}\right.\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}m< 1\\\left\{{}\begin{matrix}m>1\\-2m^2+11m-5\ge0\end{matrix}\right.\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}m< 1\\\left\{{}\begin{matrix}m>1\\\dfrac{1}{2}\le m\le5\end{matrix}\right.\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}m< 1\\1< m\le5\end{matrix}\right.\)
Kết hợp lại ta được: \(m\le5\)
a: Để A giao B là rỗng thì \(m< 3m+3\)
\(\Leftrightarrow-2m< 3\)
hay \(m>-\dfrac{3}{2}\)
a/ \(\left\{{}\begin{matrix}3m+1>0\\\Delta=\left(3m+1\right)^2-4\left(3m+1\right)\left(m+4\right)\le0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m>-\frac{1}{3}\\\left(3m+1\right)\left(-m-15\right)\le0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m>-\frac{1}{3}\\\left[{}\begin{matrix}m\ge-\frac{1}{3}\\m\le-15\end{matrix}\right.\end{matrix}\right.\) \(\Rightarrow m>-\frac{1}{3}\)
b/\(\left\{{}\begin{matrix}m+1>0\\\Delta'=\left(m-1\right)^2-\left(m+1\right)\left(3m-3\right)\le0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m>-1\\\left(m-1\right)\left(-2m-4\right)\le0\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}m>-1\\\left[{}\begin{matrix}m\ge1\\m\le-2\end{matrix}\right.\end{matrix}\right.\) \(\Rightarrow m\ge1\)
1/3m=1:3=0,3333...(m)
Tk nha ban Thịnh
1/3m=1:3=0,333333333....(m)