so sánh 1+5^2+5^4+•••+5^200 và 5^202
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
\(2^{500}=2^{5.100}=32^{100}\)
\(5^{200}=5^{2.100}=25^{100}\)
Vì \(32^{100}>25^{100}\) nên \(2^{500}>5^{200}\)
1,\(\frac{3x}{9}=\frac{2}{6}\Rightarrow\frac{3x}{9}=\frac{3}{9}\Rightarrow x=1.\)
bn định cho nguyên cái đề học sinh giỏi ra à
1 bài văn dã man
hết ns đc luôn
\(A=\dfrac{1+3+5+7+...+99}{50}\)
Số lượng số hạng của tổng là:
\(\left(99-1\right):2+1=50\)
Giá trị của A là:
\(A=\dfrac{\left(99+1\right)\cdot50:2}{50}=50\)
_____________________
\(B=\dfrac{2+4+6+..+98}{49}\)
Số lượng số hạng của tổng:
\(\left(98-2\right):2+1=49\) (số hạng)
Giá trị của B là:
\(B=\dfrac{\left(98+2\right)\cdot49:2}{49}=50\)
Vậy: A = B
Lời giải:
\(5\sqrt{2}+4\sqrt{5}-16=(\sqrt{50}-7)+(\sqrt{80}-9)\)
\(=\frac{1}{\sqrt{50}+7}-\frac{1}{\sqrt{80}+9}\)
Dễ thấy \(\sqrt{50}+7< \sqrt{80}+9\Rightarrow \frac{1}{\sqrt{50}+7}>\frac{1}{\sqrt{80}+9}\)
\(\Rightarrow 5\sqrt{2}+4\sqrt{5}-16=\frac{1}{\sqrt{50}+7}-\frac{1}{\sqrt{80}+9}>0\)
\(\Rightarrow 5\sqrt{2}+4\sqrt{5}>16\)
200+201/201+202=200/403+201/403
vì 200/201>200/403
201/202>201/403 nên \(\frac{200}{201}+\frac{201}{202}>\frac{200+201}{201+202}\)
a, QUY ĐỒNG PHÂN SỐ :
MSC=280
\(\frac{2}{5}\)\(=\)\(\frac{112}{280}\)
\(\frac{4}{7}\)\(=\)\(\frac{160}{280}\)
\(\frac{5}{8}\)\(=\)\(\frac{175}{280}\)
mà \(\frac{112}{280}\)\(< \)\(\frac{160}{280}\)\(< \)\(\frac{175}{280}\)\(=>\)\(\frac{2}{5}\)\(< \)\(\frac{4}{7}\)\(< \)\(\frac{5}{8}\)
k cho anh nha anh mỏi tay quá lên chỉ làm dc câu a tý làm câu b sau
Đặt A = 1 + 52 + 54 + .... + 5200
52A = 52 (1 + 52 + 54 + .... + 5200)
= 52 + 54 + 56 + .... + 5202
52A - A = ( 52 + 54 + 56 + .... + 5202 ) - (1 + 52 + 54 + .... + 5200)
24A = 5202 - 1
=> A = ( 5202 - 1 ) : 24
Vì ( 5202 - 1 ) : 24 < 5202 nên 1 + 52 + 54 + .... + 5200 < 5202
đợi mình nha