- a.x=b.y (a,b khác 0;b khác a) và x-y=b-a
\(\frac{x}{3}=\frac{y}{4}=\frac{z}{5}\)và \(x^2\)+2y2+az2=141
\(\frac{x}{3}=\frac{y}{4}\)\(=\frac{z}{5}\)và -2x2+y2-3z2=-77
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, a.x+a.y+b.x+b.y
= a(x+y) + b(x+y) = (x+y)(a+b)=17.(-2)=-34
b, a.x-a.y+b.x-b.y
= a(x-y)+b(x-y)
=(x-y)(a+b)=-7(-1)=7
:)
a) a.x + a.y + b.x + b.y
= a.(x + y) + b.(x + y)
= a . 17 + b . 17
= (a +b) . 17
= -2 . 17 = -34
b) a.x - a.y + b.x - b.y
= a.(x - y) + b.(x - y)
= a . (-1) + b.(-1)
= (a + b) . (-1)
= -7 . (-1) = 7
Theo lời của bạn Dung, Ngọc bổ sung cho Vũ thêm cách nữa nhé :
Nếu đề tương tự như cách 1 mình làm thì ta có :
\(\left(x^2+y^2+z^2\right)\left(a^2+b^2+c^2\right)=\left(ax+by+cz\right)^2\)
\(\Leftrightarrow\left(a^2x^2+b^2y^2+c^2z^2\right)+a^2y^2+a^2z^2+b^2x^2+c^2x^2+b^2z^2+c^2y^2=\left(a^2x^2+b^2y^2+c^2z^2\right)+2\left(axby+bycz+czax\right)\)
\(\Leftrightarrow\left(a^2y^2-2aybx+b^2x^2\right)+\left(a^2z^2-2azcx+c^2x^2\right)+\left(b^2z^2-2bycz+c^2y^2\right)=0\)
\(\Leftrightarrow\left(ay-bx\right)^2+\left(az-cx\right)^2+\left(bz-cy\right)^2=0\)
Mà mỗi hạng tử ở vế phải luôn không âm, do vậy :
\(\hept{\begin{cases}ay-bx=0\\az-cx=0\\bz-cy=0\end{cases}}\) \(\Leftrightarrow\hept{\begin{cases}\frac{a}{x}=\frac{b}{y}\\\frac{a}{x}=\frac{c}{z}\\\frac{b}{y}=\frac{c}{z}\end{cases}}\) \(\Rightarrow\frac{a}{x}=\frac{b}{y}=\frac{c}{z}\)
Vì M không phụ thuộc vào x, y
=> > Khi \(x+y=1\) và \(x=1;y=0\) và \(x=0;y=1\) thì giá trị của M bằng nhau.
\(\Rightarrow\frac{a+b}{c+d}=\frac{a}{b}=\frac{c}{d}\)
=> Bốn số a, b, c, d lập thành tỉ lệ thức.
\(M=\frac{ax+by}{cx+dy}=\frac{a+b}{c+d}\)
Vậy: M không phụ thuộc x,y
\(\Rightarrow\frac{a+b}{c+d}=\frac{a}{b}=\frac{c}{d}\)
a.x - a.y + b.x - b.y =(a.x - a.y) + (b.x-b.y)
= a(x - y) + b(x - y)
=(a+b)(x-y)
Giá trị của biểu thức tại a+b= -7 và x-y= -1 là
-7.(-1)=7
Để giải biểu thức x - y + b.x - b.y, ta sử dụng thông tin a + b = -7 và x - y = -1.
Thay thế a + b = -7 vào biểu thức ban đầu, ta có:
x - y + b.x - b.y = (x + b.x) + (-y - b.y) = (1 + b)x + (-1 - b)y
Thay thế x - y = -1 vào biểu thức trên, ta có:
(1 + b)x + (-1 - b)y = (1 + b)x + (-1 - b)(x - 1) = (1 + b)x + (-1 - b)x + (1 + b) = (2b)x + (2 - b)
Vậy, biểu thức đã cho được đơn giản thành (2b)x + (2 - b).