K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 12 2016

Theo lời của bạn Dung, Ngọc bổ sung cho Vũ thêm cách nữa nhé :

Nếu đề tương tự như cách 1 mình làm thì ta có : 

\(\left(x^2+y^2+z^2\right)\left(a^2+b^2+c^2\right)=\left(ax+by+cz\right)^2\)

\(\Leftrightarrow\left(a^2x^2+b^2y^2+c^2z^2\right)+a^2y^2+a^2z^2+b^2x^2+c^2x^2+b^2z^2+c^2y^2=\left(a^2x^2+b^2y^2+c^2z^2\right)+2\left(axby+bycz+czax\right)\)

\(\Leftrightarrow\left(a^2y^2-2aybx+b^2x^2\right)+\left(a^2z^2-2azcx+c^2x^2\right)+\left(b^2z^2-2bycz+c^2y^2\right)=0\)

\(\Leftrightarrow\left(ay-bx\right)^2+\left(az-cx\right)^2+\left(bz-cy\right)^2=0\)

Mà mỗi hạng tử ở vế phải luôn không âm, do vậy :

\(\hept{\begin{cases}ay-bx=0\\az-cx=0\\bz-cy=0\end{cases}}\) \(\Leftrightarrow\hept{\begin{cases}\frac{a}{x}=\frac{b}{y}\\\frac{a}{x}=\frac{c}{z}\\\frac{b}{y}=\frac{c}{z}\end{cases}}\) \(\Rightarrow\frac{a}{x}=\frac{b}{y}=\frac{c}{z}\)

9 tháng 12 2016

khó quá trời đất ơi!

16 tháng 8 2017

Ờm thì đại khái như vầy , dùng thêm hằng cao cấp mới chơi được =))

Link : Bảy hằng đẳng thức đáng nhớ – Wikipedia tiếng Việt 

Dùng hằng mở rộng số 4

Ta có :

\(\frac{a}{x}+\frac{b}{y}+\frac{c}{z}=0\)

\(\Leftrightarrow ayz+bxz+cxy=0\) (1)

Lại có :

\(\left(\frac{a}{x}+\frac{b}{y}+\frac{c}{z}\right)^2=\frac{a^2}{x^2}+\frac{b^2}{y^2}+\frac{c^2}{z^2}+2.\left(\frac{xy}{ab}+\frac{yz}{bc}+\frac{zx}{ca}\right)=1^2=1\) (chỗ này dùng cái skill mở rộng) 

<=> \(\frac{a^2}{x^2}+\frac{b^2}{y^2}+\frac{c^2}{z^2}+2.\left(\frac{xyc}{abc}+\frac{ayz}{abc}+\frac{bzx}{abc}\right)=1\)

<=> \(\frac{a^2}{x^2}+\frac{b^2}{y^2}+\frac{c^2}{z^2}+2.\frac{ayz+bxz+cxy}{abc}=1\)

Thay 1 vào 

=> \(\frac{a^2}{x^2}+\frac{b^2}{y^2}+\frac{c^2}{z^2}=1\)

16 tháng 8 2017

mình giải hơi khác 1 chút, nhưng thôi cx đc

29 tháng 8 2017

\(\frac{\left(ax+by+cz\right)^2}{x^2+y^2+z^2}=a^2+b^2+c^2\)

\(\Leftrightarrow\left(ax+by+cz\right)^2=\left(a^2+b^2+c^2\right)\left(x^2+y^2+z^2\right)\)

\(\Leftrightarrow\left(ax+by+cz\right)^2=a^2x^2+a^2y^2+a^2z^2+b^2x^2+b^2y^2+b^2z^2+c^2x^2+c^2y^2+c^2z^2\)

Mà \(\left(ax+by+cz\right)^2=a^2x^2+b^2y^2+c^2x^2+2abxy+2acxz+2bcyz\)

Nên \(a^2y^2+a^2z^2+b^2x^2+b^2z^2+c^2x^2+c^2y^2=2abxy+2acxz+2bcyz\)

\(\Leftrightarrow a^2y^2+a^2z^2+b^2x^2+b^2z^2+c^2x^2+c^2y^2-2abxy-2acxz-2bcyz=0\)

\(\Leftrightarrow\left(a^2y^2-2abxy+b^2x^2\right)+\left(a^2z^2-2acxz+c^2x^2\right)+\left(b^2z^2-2bcyz+c^2y^2\right)=0\)

\(\Leftrightarrow\left(ay-bx\right)^2+\left(az-cx\right)^2+\left(bz-cy\right)^2=0\)

\(\Rightarrow\hept{\begin{cases}ay-bx=0\\az-cx=0\\bz-cy=0\end{cases}\Rightarrow\hept{\begin{cases}ay=bx\\az=cx\\bz=cy\end{cases}\Rightarrow}\hept{\begin{cases}\frac{a}{x}=\frac{b}{y}\\\frac{a}{x}=\frac{c}{z}\\\frac{b}{y}=\frac{c}{z}\end{cases}}}\)

\(\Rightarrow\frac{a}{x}=\frac{b}{y}=\frac{c}{z}\) (đpcm)

27 tháng 9 2017

thiếu đề kìa

27 tháng 9 2017

//olm.vn/hoi-dap/question/775639.html

vào đây xem nhé

7 tháng 2 2021

Ta có: \(\frac{x}{a}+\frac{y}{b}+\frac{z}{c}=1\Leftrightarrow\left(\frac{x}{a}+\frac{y}{b}+\frac{z}{c}\right)^2=1\)

\(\Leftrightarrow\frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}+2\left(\frac{xy}{ab}+\frac{yz}{bc}+\frac{zx}{ca}\right)=1\)

\(\Leftrightarrow\frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}+2\cdot\frac{xyc+yza+zxb}{abc}=1\)

Mà \(\frac{a}{x}+\frac{b}{y}+\frac{c}{z}=0\Leftrightarrow\frac{yza+zxb+xyc}{xyz}=0\)

\(\Rightarrow yza+zxb+xyc=0\)

\(\Rightarrow A=\frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}=1\)

10 tháng 2 2018

khó quá ta

10 tháng 2 2018

Đặt : x/a = m ; y/b = n ; z/c = p

=> m+n+p = 1 ; 1/m+1/n+1/p=0

1/m+1/n+1/p=0

<=> mn+np+pm/mnp=0

<=> mn+np+pm=0

<=> 2mn+2np+2pm=0

Xét : 1 = (m+n+p)^2 = m^2+n^2+p^2+2mn+2np+2pm = m^2+n^2+p^2

=> x^2/a^2+y^2/b^2+z^2/c^2 = 1

=> ĐPCM

Tk mk nha