Cho tam giác ABC có 3 góc đều nhọn. Gọi D bất kì thuộc cạnh BC. Cho O1;O2;O lần lượt là tâm đường tròn ngoại tiếp các tam giác ABD; ADC; ABC. Chứng minh tứ giác AO1OO2 nội tiếp.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
CAI NAY mk chua hoc xl ban ,chuc ban nam ms vv hp bên gia đinh nhe ////
Bạn tự vẽ hình nhé. Mình giải thôi.
Ta xét tam giác BDH có BD là cạnh đối diện góc vuông => BD>BH (1)
Xét tam giác CDK có CD là cạnh đối diện góc vuông => CD>CK (2)
Cộng vế 1 với vế 2, ta được BH+CK<BD+CD
<=> BH+CK<BC
+ Trong tg vuông BHD có BD>BH (trong tg vuông cạnh huyền là cạnh lớn nhất)
+ Trong tg vuông CKD có CD>CK )lý do như trên)
=> BD+CD=BC>BH+CK
Hình ( bn tự vẽ)
a) xét \(\Delta HBD\)có \(\widehat{BHD}=90^o\)( do \(BH\perp AD\equiv H\))
\(\Rightarrow\)\(BH>BD\)(vì trong tam gác vuông đường vuông góc ngắn hơn đường xiên)(1)
b)Xét \(\Delta KHD\)có \(\widehat{CKD}=90^o\)( do \(CK\perp AD\equiv K\))
\(\Rightarrow CK>CD\)(vì trong tam gác vuông đường vuông góc ngắn hơn đường xiên)(2)
Tử (1) và (2) \(\Rightarrow BH+CK>BD+CD\)
Hay \(BH+CK>BC\)
CHÚC BẠN HỌC TỐT~
ta có BM >=BH
CM>=CK
Từ đó suy ra:
BM+CM>=BH+CK
=> BH+CK <=BC
Dấu'=' tương đương AM vuông góc BC
Vậy để điểm M ở .....
Xét tứ giác ADME có
AD//ME
AE//DM
Do đó: ADME là hình bình hành
Suy ra: Hai đường chéo AM và DE cắt nhau tại trung điểm của mỗi đường
hay D và E đối xứng nhau qua I